Chứng minh rằng:
9) (3^2016+3^2015-3^2014) chia hết cho 11
10) ( 36^36-9^10) chia hết cho 45
Chứng minh rằng:
9) (3^2016+3^2015-3^2014) chia hết cho 11
10) ( 36^36-9^10) chia hết cho 45
Mình chỉ làm được cái thứ 2 thôi..thông cảm nhé:
36^36 - 9^10 chia hết cho 9 (1) (vì 36^36 và 9^10 đều chia hết cho 9)
36^36 tận cùng là 6 (số tận cùng bằng 6 nâng lên luỹ thừa n (n nguyên dương) thì kết quả cũng tận cùng là 6)
9^10 tận cùng là 1 (9 luỹ thừa m với m chẵn luôn tận cùng là 1)
---> 36^36 - 9^10 tận cùng là 5 và do đó nó chia hết cho 5 (2)
Vì 5 và 9 là 2 số nguyên tố cùng nhau nên từ (1),(2) ---> 36^36 - 9^10 chia hết cho 45.
9) Ta có :
32016 + 32015 - 32014 = 32014 . (32 + 3 - 1) = 32014 . (9 + 3 - 1) = 32014 . 11 chia hết cho 11 (ĐPCM)
Tớ chỉ làm đc phần 9 thui ^_^
chứng minh rằng
1. (10^10 +10^16+ 10^17)chia hết cho 555
2.(84^7- 27^9 -9^13) chia hết cho 15
3. (5^7-5^6+5^5)chia hết cho 21
4. (7^6+7^5-7^4) chia hết cho 77
5.(4^13+ 32^5-8^8) chia hết cho 5
6.(2006^1000 +2006^999) chia hết cho 2007
7.(43^43 -17^17) chia hết cho 10
8. (7^1000- 3^1000) chia hết cho 10
9( 3^2016 +3^ 2015 - 3^2014)chia hết cho 11
10.(36^36 -9^10)chia hết cho 45
Câu 3,57-56+55=55.52-55.5+55=55.(52-5+1)=55.21 chia hết cho 21
Câu:4:76+75-74=74.72+74.7-74=74.(72+7-1)=74.55=74.11.5=73.7.11.5=73.77.5 chia hết cho 77
Các câu khác tương tự
bạn biết làm hết rồi, chỉ còn câu 2 chưa làm được đúng ko, vậy mình làm cho nhé, nhưng mà mình nghĩ là đề là 81 chứ ko phải 84 đâu
\(81^7-27^9-9^{13}=\left(3^4\right)^7-\left(3^3\right)^9-\left(3^2\right)^{13}=3^{28}-3^{27}-3^{26}=3^{25}\left(3^3-3^2-3\right)=3^{25}.15\) chia hết cho 15
Vậy 817-279-913 chia hết cho 15 (đpcm)
chứng minh rằng
1. (10^10 +10^16+ 10^17)chia hết cho 555
2.(84^7- 27^9 -9^13) chia hết cho 15
3. (5^7-5^6+5^5)chia hết cho 21
4. (7^6+7^5-7^4) chia hết cho 77
5.(4^13+ 32^5-8^8) chia hết cho 5
6.(2006^1000 +2006^999) chia hết cho 2007
7.(43^43 -17^17) chia hết cho 10
8. (7^1000- 3^1000) chia hết cho 10
9( 3^2016 +3^ 2015 - 3^2014)chia hết cho 11
10.(36^36 -9^10)chia hết cho 45
3: \(=5^5\left(5^2-5+1\right)=5^2\cdot21⋮21\)
4: \(=7^4\left(7^2+7-1\right)=7^4\cdot55=7^3\cdot5\cdot77⋮77\)
5: \(=\left(2^{26}+2^{25}-2^{24}\right)=2^{24}\left(2^2+2-1\right)=2^{24}\cdot5⋮5\)
bài 5: chứng minh rằng. a)36^36-9^10 chia hết cho 45. b)8^10-8^9-8^8 chia hết cho 55. c)5^5-5^4+5^3 chia hết cho 7. d)7^6+7^5-7^4 chia hết cho 12. e)24^54.54^24.10^2 chia hết cho 72^63. g)81^7-27^9-9^13 chia hết cho 45. h)3^n+3+3^n+1+2^n+3+2^n+2 chia hết cho 6. i) (2^10+2^11+2^12):7 là một số tự nhiên
b: \(8^{10}-8^9-8^8=8^8\left(8^2-8-1\right)=8^8\cdot55⋮55\)
c: 5^5-5^4+5^3
=5^3(5^2-5+1)
=5^3*21 chia hết cho 7
e:
72^63=(3^2*2^3)^63=3^126*2^189
\(24^{54}\cdot54^{24}\cdot10^2=2^{162}\cdot3^{54}\cdot3^{72}\cdot2^{24}\cdot2^2\cdot5^2\)
\(=2^{188}\cdot3^{136}\cdot5^2\) chia hết cho 3^126*2^189
=>ĐPCM
g: \(=\left(3^4\right)^7-\left(3^3\right)^9-3^{26}\)
\(=3^{26}\left(3^2-3-1\right)=5\cdot3^{26}=5\cdot9\cdot3^{24}⋮5\cdot9=45\)
Chứng minh rằng
a) 36^36 - 9^10 chia hết cho 45
b) 7^n+4 - 7^n chia hết cho 100
c) 7^1000 - 3^1000 chia hết cho 10
d) 20^15 -1 chia hết cho 11
e) 2^30 + 3^30 chia hết cho 13
f) 555^222 + 222^555 chia hết cho 7
chứng minh rằng 36^36 -9^10 chia hết cho 45
Đặt \(A=36^{36}-9^{10}\)
\(\left\{{}\begin{matrix}36^{36}⋮9\\9^{10}⋮9\end{matrix}\right.\Rightarrow A=36^{36}-9^{10}⋮9\)
\(36\equiv1\left(mod5\right)\\ \Rightarrow36^{36}\equiv1\left(mod5\right)\\ 9\equiv-1\left(mod5\right)\\ \Rightarrow9^{10}\equiv1\left(mod5\right)\\ \Rightarrow A=36^{36}-9^{10}\equiv0\left(mod5\right)\\ \Rightarrow A⋮5\)
(5;9)=1 => A chia hết 45
Chứng minh
a/ 81^7-27^9+3^29chia hết cho33
b/ [(9^11-9^10-9^9):639 thuộc N
c/ (36^36-9^2000) chia hết cho 45
a) Có 817 - 279 + 329
= (34)7 - (33)9 + 329
= 328 - 327 + 329
= 327(3 - 1 + 32)
= 327.11 = 326.33 \(⋮33\)
b) 911 - 910 - 99
= 99(92 - 9 - 1)
= 99.71
= 98.639 \(⋮639\)
c) P = 3636 - 92000
Có 3636 = \(\overline{....6}\)
\(9^{2000}=\left(9^2\right)^{1000}=81^{1000}=\overline{.....1}\)
nên P = \(\overline{...6}-\overline{...1}=\overline{...5}\Rightarrow P⋮5\)
dễ thấy P \(⋮9\) mà (5;9) = 1
nên \(P⋮9.5=45\)
Chứng minh rằng 3636 - 910 chia hết cho 45
Chứng minh rằng:a, 3636- 910 chia hết cho 45
b, B= 3+ 32+33+.......+31998 chia hết cho 12 và 39