Tìm số tự nhiên n,để:
a) n+4:n
b) 5n-6:n (n<1)
c) 143-12n:n (với n<12)
Bài 4: Chứng minh rằng:
a) \(4^{10}+4^7\) chia hết cho 65
b) \(10^{10}-10^9-10^8\) chia hết cho 89
Bài 5. Tìm số tự nhiên n để:
a) 5n+4 chia hết cho n
b) n+6 chia hết cho n+2
c) 3n+1 chia hết cho n-2
d) 3n+9 chia hết cho 2n-1
Bài 6: chứng minh rằng:
\(\overline{abab}\) chia hết cho 101
\(\overline{abc-\overline{cba}}\) chia hết cho 9 và 11
Bài 5:
b: Ta có: \(n+6⋮n+2\)
\(\Leftrightarrow n+2\in\left\{2;4\right\}\)
hay \(n\in\left\{0;2\right\}\)
c: Ta có: \(3n+1⋮n-2\)
\(\Leftrightarrow n-2\in\left\{-1;1;7\right\}\)
hay \(n\in\left\{1;3;9\right\}\)
Bài 2: Tìm số tự nhiên n để:
a)(3n+5) chia hết cho n
b) (7n+4) chia hết cho n
c) (27-4n) chia hết cho n ( n<7)
\(a,\Rightarrow n\inƯ\left(5\right)=\left\{1;5\right\}\\ b,\Rightarrow n\inƯ\left(4\right)=\left\{1;2;4\right\}\\ c,\Rightarrow n\inƯ\left(27\right)=\left\{1;3\right\}\left(n< 7\right)\)
Bài 1: Thực hiện phép tính bằng cách hợp lí nhất:
1+2-3-4+5+6-7-8=...-299-300+301+302
Bài 2: Tìm x, biết:
a) (2x+1)3=9.81
b) 1+3+5+...+x=1600
Bài 3: Tìm số tự nhiên n để:
a) (35-12n)⋮n
b) (n+13)⋮(n+5) với n>5
Bài 4: Số học sinh khối 6 của một trường khi sếp hàng 12,15,18 đều thừ ra 6 em. Tìm số học sinh đó, biết số học sinh khối 6 của trường lớn hơn 300 và nhỏ hơn 400 em.
Bài 5: Cho hình lục giác đều ACBDEF có cạnh AB=4 cm, một đường chéo AC= 6 cm. Tính diện tích hình lục giác đều đã cho.
Bài 3:
a: \(35-12n⋮n\)
\(\Leftrightarrow n\in\left\{1;5;7;35\right\}\)
b: \(n+13⋮n+5\)
\(\Leftrightarrow n+5\in\left\{1;-1;2;-2;4;-4;8;-8\right\}\)
hay \(n\in\left\{-4;-6;-3;-7;-1;-9;3;-13\right\}\)
TÌM n là số tự nhiên để:A bằng (n+5)(n+6)chia hết cho 6n
tìm n là số tự nhiên để:A=(n+5)(N+6) chia hết cho 6n
Ta có :
\(A=\left(n+5\right)\left(n+6\right)\div6\)
\(A=\left(n^2+6n+5n+30\right)\div6n\)
\(A=\left(n+11+\frac{30}{n}\right)\times\frac{1}{6}\)
Để \(\left(n+5\right)\left(n+6\right)⋮6\) thì n phải là ước của 30 và \(n+11+\frac{30}{n}\)chia hết cho 6
=> n = { 1 ; 3 ; 10 ; 30 }
Mình làm theo câu hỏi tương tự nhưng ở đó ko đc rõ ràng cho lắm nên mình làm lại!
Ta có : A = (n + 5)(n+6)
= n2 + 11n + 30
= 12n + n × (n - 1) + 30
Để A chia hết cho 6n thì (n - 1) + 30 chia hết cho 6n
Mà n × (n - 1) chia hết cho n
=> 30 chia hết cho n
=> n là ước của 30
=> n thuộc { 1;2;3;5;6;10;15;30 }
Mặt khác : 30 chia hết cho 6 => n × (n - 1) chia hết cho 6
=> n × (n - 1) chia hết cho 2 và 3
=> n × (n - 1) chia hết cho 3
=> n chia hết cho 3 nên n thuộc { 3;15;6;30 }
=> n - 1 chia hết cho 3 nên n thuộc { 1 và 10 }
Tìm số tự nhiên n để:
a) n + 8 ⋮ n + 3
b) 16 - 3 n ⋮ n + 4 với n < 6
c) 5 n + 2 ⋮ 9 - 2 n với n < 5
Tìm số tự nhiên n để:
a, (n+8) ⋮ (n+3)
b, (16 - 3n) ⋮ (n+4) với n < 6
c, (5n+2) ⋮ (9 - 2n) với n < 5
a, Vì (n+3) ⋮ (n+3) nên để (n+8) ⋮ (n+3) thì: [(n+8) - (n+3)] ⋮ (n+3) hay 5 ⋮ (n+3), Suy ra: n+3 ∈ {1;5}
Vì n + 3 ≥ 3 nên n + 3 = 5 => n = 2
Vậy n = 2
b, Vì 3(n+4) ⋮ (n+4) nên để (16 - 3n) ⋮ (n+4) thì: [(16 - 3n)+3(n+4)] ⋮ (n+4) hay 28 ⋮ (n+4)
Suy ra: n+4 ∈ {1;2;4;7;14;28}
Vì 0 ≤ n ≤6 nên 4 ≤ n+4 ≤ 10.
Từ đó ta có: n+4 ∈ {4;7} hay n ∈ {0;3}
c, Vì 5(9 - 2n) ⋮ (9 - 2n) nên nếu (5n+2) ⋮ (9 - 2n) thì 2(5n+2) ⋮ (9 - 2n)
Suy ra: [5(9 - 2n)+2(5n+2)] ⋮ (9 - 2n) hay 49 ⋮ (9 - 2n) => 9 - 2n ∈ {1;7;49}
Vì 9 - 2n ≤ 9 nên 9 - 2n ∈ {1;7}
Từ đó ta có n ∈ {4;1} với n < 5
Thử lại ta thấy n = 4 hoặc n = 1 đều thõa mãn.
Vậy n ∈ {4;1}
Tìm số tự nhiên N để:
a)17.n là số nguyên tố hay hợp số
b)11.(n-20) là số nguyên tố(n≥20)
Tìm số tự nhiên n,để:
a) n+4:n
b) 5n-6:n (n<1)
c) 143-12n:n (với n<12)
a: \(\Leftrightarrow n\inƯ\left(4\right)\)
hay \(n\in\left\{1;2;4\right\}\)
b: \(\Leftrightarrow n\in\left\{1;2;3;6\right\}\)
mà n<1
nên \(n\in\varnothing\)
c: \(\Leftrightarrow n\inƯ\left(143\right)\)
mà n<12
nên \(n\in\left\{1;11\right\}\)