a, Vì (n+3) ⋮ (n+3) nên để (n+8) ⋮ (n+3) thì: [(n+8) - (n+3)] ⋮ (n+3) hay 5 ⋮ (n+3), Suy ra: n+3 ∈ {1;5}
Vì n + 3 ≥ 3 nên n + 3 = 5 => n = 2
Vậy n = 2
b, Vì 3(n+4) ⋮ (n+4) nên để (16 - 3n) ⋮ (n+4) thì: [(16 - 3n)+3(n+4)] ⋮ (n+4) hay 28 ⋮ (n+4)
Suy ra: n+4 ∈ {1;2;4;7;14;28}
Vì 0 ≤ n ≤6 nên 4 ≤ n+4 ≤ 10.
Từ đó ta có: n+4 ∈ {4;7} hay n ∈ {0;3}
c, Vì 5(9 - 2n) ⋮ (9 - 2n) nên nếu (5n+2) ⋮ (9 - 2n) thì 2(5n+2) ⋮ (9 - 2n)
Suy ra: [5(9 - 2n)+2(5n+2)] ⋮ (9 - 2n) hay 49 ⋮ (9 - 2n) => 9 - 2n ∈ {1;7;49}
Vì 9 - 2n ≤ 9 nên 9 - 2n ∈ {1;7}
Từ đó ta có n ∈ {4;1} với n < 5
Thử lại ta thấy n = 4 hoặc n = 1 đều thõa mãn.
Vậy n ∈ {4;1}