rút gọn
(3x-1).(2x+7)-(x+1).(6x-5)-(18x-12)
Rút gọn biểu thức
A= -(3x+7)+(5x-2)+(2x-10)
B= (6x+8)-(4x-5)-3x
C= 2.(5x+3)-(2x-1)+12
D=(x+7)-3.(x+1)+2x-5
A=-(3x+7)+(5x-2)+(2x-10)
=-3x-7+5x-2+2x-10
=(-3x+5x+2x)-(7+2+10)
=4x-19
B = (6x+8)-(4x-5)-3x
= 6x+8-4x+5-3x
= (6x-4x-3x) + (8+5)
= -x + 13
= 13-x
C = 2(5x+3) - (2x-1) + 12
= 10x+6 - 2x + 1 + 12
= (10x-2x) + (6+1+12)
= 8x + 19
D = (x+7)-3(x+1)+2x-5
= x+7-3x-3+2x-5
= (x-3x+2x) + (7-3-5)
= -1
1.rút gọn biểu thuc P=\(\dfrac{2}{x+3}+\dfrac{1}{x-3}+\dfrac{9-x}{9-x^2}\) với x\(\ne-3vàx\ne3\)
2.thực hiện phép tính \(\left(2x^4-3x^3-3x^2+6x-1\right):\left(x^2-2\right)\)
\(\left(15x^4y^6-12^3y^4-18x^2y^3\right):\left(-6x^2y^2\right)\)
Câu 1
Rút gọn các biểu thức sau:
a. 2x(3x + 2) - 3x(2x + 3)
b. (x + 2)3 + (x - 3)2 - x2(x + 5)
c. (3x3 - 4x2 + 6x) : 3x
Câu 2
Phân tích đa thức sau thành nhân tử: 2x3 - 12x2 + 18x
Câu 3
Tìm x, biết: 3x(x - 5) - x2 + 25 = 0
Câu 4 Cho hình bình hành ABCD (AB > AD). Gọi E và K lần lượt là trung điểm của CD và AB. BD cắt AE, AC, CK lần lượt tại N, O và I. Chứng minh rằng:
a. Tứ giắc AECK là hình bình hành.
b. Ba điểm E, O, K thẳng hàng.
c. DN = NI = IB
d. AE = 3KI
Câu 5 Cho x, y là hai số thực tùy ý, tìm giá trị nhỏ nhất của biểu thức sau:
P = x2 + 5y2 + 4xy + 6x + 16y + 32
Câu 1:
a) 2x(3x+2) - 3x(2x+3) = 6x^2+4x - 6x^2-9x = -5x
b) \(\left(x+2\right)^3+\left(x-3\right)^2-x^2\left(x+5\right)\)
\(=x^3+6x^2+12x+8+x^2-6x+9-x^3-5x^2\)
\(=2x^2+6x+17\)
c) \(\left(3x^3-4x^2+6x\right)\div\left(3x\right)=x^2-\dfrac{4}{3}x+2\)
Câu 2:
\(2x^3-12x^2+18x=2x\left(x^2-6x+9\right)=2x\left(x^2-2.x.3+3^2\right)=2x\left(x-3\right)^2\)
Giúp mình với mình cần gấp kết quả ạ 1, (x²y + 6x) . (x² - 3xy) a, x⁴y - 3x³y² + 6x³ - 18x²y b, x²y - x³y² + 6x³ - 18x²y C,x⁴y - 3x³y² + 6x³ + 18x²y d, x⁴y + 3x³y² - 6x³ - 18x²y 2, Tìm x biết x . (2x - 4) - 2x² + 9x - 7 = 3 a, x = 1 b, x = 2 C, x = 3 d, x = 4 3, tính giá trị của biểu thức sau tại x = 3 ; y=2 7x . (x² - 2y) + 3xy - 7x³ a, 24 b, -4 c, 6 d, -24 Cảm ơn đã giúp đỡ mình ✨
CMR giá trị của biểu thức sau ko phụ thuộc vào giá trị của biến;
a) (3x-1).(2x+7)-(x+1).(6x-5)-(18x-12)
a) (3x-1).(2x+7)-(x+1).(6x-5)-(18x-12)
=6x2+19x-7-(6x2+x-5)-18x+12
=6x2+19x-7-6x2-x+5-18x+12
=10
vậy giá trị của biểu thức (3x-1).(2x+7)-(x+1).(6x-5)-(18x-12) ko phụ thuộc vào giá trị của biến;
Rút gọn:
a) \(\frac{x^2+y^2-1+2xy}{x^2-y^2+1+2x}\)
b) \(\frac{3x^3-6x^2y+xy^2-2y^3}{9x^5-18x^4y-xy^4+2y^5}\)
a)\(\frac{x^2+y^2-1+2xy}{x^2-y^2+1+2x}\)
\(\Leftrightarrow\frac{\left(x+y\right)^2-1}{\left(x+1\right)^2-y^2}\)
\(\Leftrightarrow\frac{\left(x+y+1\right)\left(x+y-1\right)}{\left(x+1-y\right)\left(x+1+y\right)}\)
\(\Leftrightarrow\frac{x+y-1}{x-y+1}\)
b)\(\frac{3x^3-6x^2y+xy^2-2y^3}{9x^5-18x^4y-xy^4+2y^5}\)
\(\Leftrightarrow\frac{3x^2\left(x-2y\right)+y^2\left(x-2y\right)}{9x^4\left(x-2y\right)-y^4\left(x-2y\right)}\)
\(\Leftrightarrow\frac{\left(3x^2+y^2\right)\left(x-2y\right)}{\left(9x^4-y^4\right)\left(x-2y\right)}\)
\(\Leftrightarrow\frac{3x^2+y^2}{\left(3x^2-y^2\right)\left(3x^2+y^2\right)}\)
\(\Leftrightarrow\frac{1}{3x^2-y^2}\)
Bài 46. Rút gọn các biểu thức sau với x ≥ 0:
a) 2√3x – 4√3x + 27 – 3√3x
b) 3√2x – 5√8x + 7√18x + 28
\(a,=27-5\sqrt{3x}\\ b,=3\sqrt{2x}-10\sqrt{2x}+21\sqrt{2x}+28=14\sqrt{2x}+28\)
B1: C/m biểu thức sau ko có giá trị phụ thuộc vào biến
M=(3x-1)(2x+7)-(x+1)(6x-5)-(18x-12)
(3x−1)(2x+7)−(x+1)(6x−5)−(18x−12)
=6x^2+21x−2x−7−6x^2+5x−6x+5−18x+12(3x−1)(2x+7)−(x+1)(6x−5)−(18x−12)
=6x^2+21x−2x−7−6x2+5x−6x+5−18x+12
=(6x^2−6x^2)+(21x−2x+5x−6x−18x)+(12+5−7)
=10
b) (3x-1)(2x+3)-(x-5)(6x-1)-38x
= 6x^2+9x-2x-3-6x^2+x+30x-5-38x
=-8
Suy ra (3x-1)(2x+3)-(x-5)(6x-1)-38x ko phụ thuộc vào giá trị biến của x
rút gọn các biểu thức sau với x ≥ 0
a) \(2\sqrt{3x}-4\sqrt{3x}+27-3\sqrt{3x}\)
b) \(3\sqrt{2x}-5\sqrt{8x}+7\sqrt{18x}+28\)
\(a,=27-5\sqrt{3x}\\ b,=3\sqrt{2x}-10\sqrt{2x}+21\sqrt{2x}+28=14\sqrt{2x}+28\)