Giải phương trình sau :
\(3x^3-8x^2-2x+4=0\)
giải phương trình sau đặt biến phụ
1) 2x^3+7x^2+7x+2=0
2) x^3-8x^2-8x+1=0
3) x^5+2x^4+4x^2-3x+1=0
4) x^4+x^3+x^2+x+1=0
\(2x^3+7x^2+7x+2=0\)
\(\Leftrightarrow\left(2x^3+4x^2\right)+\left(3x^2+6x\right)+\left(x+2\right)=0\)
\(\Leftrightarrow2x^2\left(x+2\right)+3x\left(x+2\right)+\left(x+2\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(2x^2+3x+1\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left[2x\left(x+1\right)+\left(x+1\right)\right]=0\)
\(\Leftrightarrow\left(x+2\right)\left(x+1\right)\left(2x+1\right)=0\)
.......................................................................................
\(x^3-8x^2-8x+1=0\)
\(\Leftrightarrow\left(x+1\right)\left(x^2-x+1\right)-8x\left(x+1\right)=0\)
......................................................................................
Giải các bất phương trình sau
a) 6x2-8x+2x(2-3x)<-4 b) 2(3x+4x2)-8x(x+3)>5
a:=>6x^2-8x+4x-6x^2<-4
=>-4x<-4
=>x>1
b: =>6x+8x^2-8x^2-24x>5
=>-18x>5
=>x<-5/18
Giải các bất phương trình sau
a) 6x2-8x+2x(2-3x)<-4 b) 2(3x+4x2)-8x(x+3)>5
a)\(6x^2-8x+2x\left(2-3x\right)< -4\)
\(\Leftrightarrow6x^2-8x+4x-6x^2< -4\)
\(\Leftrightarrow-4x< -4\)
\(\Leftrightarrow-4x.\dfrac{-1}{4}>-4\cdot\dfrac{-1}{4}\)
\(\Leftrightarrow x>1\)
Vậy bất phương trình có nghiệm là \(S=\left\{xIx>1\right\}\)
b)\(2\left(3x+4x^2\right)-8x\left(x+3\right)>5\)
\(\Leftrightarrow6x+8x^2-8x^2-24x>5\)
\(\Leftrightarrow-18x>5\)
\(\Leftrightarrow-18x\cdot\dfrac{-1}{18}< 5\cdot\dfrac{-1}{18}\)
\(\Leftrightarrow x< -\dfrac{5}{18}\)
Vậy bất phương trình có nghiệm là \(S=\left\{xIx< -\dfrac{5}{18}\right\}\)
Giải phương trình sau:
\(\frac{4}{2x^3+3x^2-8x-12}-\frac{1}{x^2-4}-\frac{4}{2x^2+7x+6}+\frac{1}{2x+3}=0\)
giải phương trình sau:
a) \(4x^2+\left(8x-4\right).\sqrt{x}-1=3x+2\sqrt{2x^2+5x-3}\)
b) \(8x^3-36x^2+\left(1-3x\right)\sqrt{3x-2}-3\sqrt{3x-2}+63x-32=0\)
c) \(2\sqrt[3]{3x-2}-3\sqrt{6-5x}+16=0\)
d) \(\sqrt[3]{x+6}-2\sqrt{x-1}=4-x^2\)
Giải các phương trình sau:
a) x + 3 x − 1 − 1 x − 3 + 8 x − 1 x − 3 = 0 ;
b) |2x - 1| = 3x - 9
Giải phương trình \(3x^3-8x^2-2x+4=0\)
Ta có :
\(3x^3-8x^2-2x+4=\left(3x-2\right)\left(x^2-2x-2\right)\)
\(\Leftrightarrow\left(3x-2\right)\left(x^2-2x-2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}3x-2=0\\x^2-2x-2=0\end{cases}}\)
Th1 : \(3x-2=0\Leftrightarrow3x=2\Leftrightarrow x=\frac{2}{3}\)
Th2: \(x^2-2x-2=0\)
\(\Leftrightarrow x^2-2x+1=3\)
\(\Leftrightarrow\left(x-1\right)^2=3\)
\(\Leftrightarrow\orbr{\begin{cases}x-1=\sqrt{3}\\x-1=-\sqrt{3}\end{cases}\Leftrightarrow\orbr{\begin{cases}x=1+\sqrt{3}\\x=1-\sqrt{3}\end{cases}}}\)
Vậy phương trình có 3 nghiệm : \(x=1\), \(x=1\pm\sqrt{3}\)
\(3x^3-8x^2-2x+4=0\)
\(\Leftrightarrow\left(3x-2\right)\left(x^2-2x-2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}3x-2=0\\x^2-2x-2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{2}{3}\\x=1\pm\sqrt{3}\end{cases}}\)
Vậy tập nghiệm của phương trình \(S=\left\{\frac{2}{3};1\pm\sqrt{3}\right\}\)
Giải các phương trình sau:
a \(x^4=5x^2+2x-3\)
b \(x^4=6x^2+12x+10\)
c \(3x^3+3x^2+3x=-1\)
d \(8x^3-12x^2+6x-5=0\)
104. Giải các phương trình:
a) \(2x^3-x^2-8x+4=0\)
b) \(3x^3+6x^2-75x-150=0\)
c) \(2x^5-3x^4+6x^3-8x^2+3=0\)
b)\(3x^3+6x^2-75x-150=0\Leftrightarrow3\left(x^3+2x^2-25x-50\right)=0\Leftrightarrow x^3+2x^2-25x-50=0\)
<=>\(x^2\left(x+2\right)-25\left(x+2\right)=0\Leftrightarrow\left(x^2-25\right)\left(x+2\right)=0\Leftrightarrow\left(x-5\right)\left(x+5\right)\left(x+2\right)=0\)
<=>x-5=0 hoặc x+5=0 hoặc x+2=0<=>x=5 hoặc x=-5 hoặc x=-2
c)\(2x^5-3x^4+6x^3-8x^2+3=0\Leftrightarrow2x^5+x^4-4x^4-2x^3+8x^3+4x^2-12x^2+3=0\)
<=>\(x^4\left(2x+1\right)-2x^3\left(2x+1\right)+4x^2\left(2x+1\right)-3\left(4x^2-1\right)=0\)
<=>\(x^4\left(2x+1\right)-2x^3\left(2x+1\right)+4x^2\left(2x+1\right)-3\left(2x-1\right)\left(2x+1\right)=0\)
<=>\(\left(2x+1\right)\left(x^4-2x^3+4x^2-6x+3\right)=0\)
<=>\(\left(2x+1\right)\left(x^4-2x^3+x^2+3x^2-6x+3\right)=0\)
<=>\(\left(2x+1\right)\left[x^2\left(x^2-2x+1\right)+3\left(x^2-2x+1\right)\right]=0\)
<=>\(\left(2x+1\right)\left(x^2+3\right)\left(x^2-2x+1\right)=0\Leftrightarrow\left(2x+1\right)\left(x^2+3\right)\left(x-1\right)^2=0\)
Vì \(x^2\ge0\Rightarrow x^2+3\ge3>0\Rightarrow\orbr{\begin{cases}2x+1=0\\\left(x-1\right)^2=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=-\frac{1}{2}\\x=1\end{cases}}\)
a) 2x3 - x2 - 8x + 4 = 0
x2.(2x - 1) - 4.(2x - 1) = 0
(x2 - 4)(2x - 1) = 0
\(\Rightarrow\orbr{\begin{cases}x^2-4=0\\2x-1=0\end{cases}}\Rightarrow\orbr{\begin{cases}x^2=4\\x=\frac{1}{2}\end{cases}}\)
Với x2 = 4
=> x = 2 hoặc x = -2
=> x = {-2 ; 2 ; \(\frac{1}{2}\))
a) x2(2x-1) - 4(2x-1) = 0 <=> (2x-1)(x2- 4)=0 <=> x=\(\frac{1}{2}\)hay x=-2 hay x= 2