Tìm GTLN và GTNN : f(x) = 2x3 + \(\frac{3}{x^2}\) + 5 trên đoạn [ 0;3 ]
1.Cho f(x)= 5x2-x+2. Tìm x để f(x) đạt GTNN và tính GTNN đó?
2. Cho f(x)= 2/3x2 -1/5x.Tìm x để f(x) đạt GTNN và tính GTNN đó?
3. Cho f(x)= -5x2+4x+7.Tìm x để f(x) đạt GTLN và tính GTLN đó?
4. Cho f(x)= -4/3x2+ 2/15x.Tìm x để f(x) đạt GTLN và tính GTLN đó?
1.Cho f(x)= 5x2-x+2. Tìm x để f(x) đạt GTNN và tính GTNN đó?
2. Cho f(x)= 2/3x2 -1/5x.Tìm x để f(x) đạt GTNN và tính GTNN đó?
3. Cho f(x)= -5x2+4x+7.Tìm x để f(x) đạt GTLN và tính GTLN đó?
4. Cho f(x)= -4/3x2+ 2/15x.Tìm x để f(x) đạt GTLN và tính GTLN đó?
tìm GTLN và GTNN cảu hàm số X+ căn2 cosX trên đoạn (0;π/2)
cần gấp
\(y'=1-\sqrt{2}\sin x=\dfrac{1}{\sqrt{2}}\Rightarrow x=\dfrac{\pi}{4}\\ y\left(0\right)=\sqrt{2};y\left(\dfrac{\pi}{4}\right)=\dfrac{\pi}{4}+1;y\left(\dfrac{\pi}{2}\right)=\dfrac{\pi}{2}\\ \Rightarrow y_{max}=y\left(\dfrac{\pi}{4}\right)=\dfrac{\pi}{4}+1\\ y_{min}=y\left(0\right)=\sqrt{2}\)
1. Tìm GTNN của \(y=x+\dfrac{1}{x}-5\) trên \(\left(0,+\infty\right)\)
2. Tìm GTNN của \(y=4x^2+\dfrac{1}{x}-4\) trên \(\left(0,+\infty\right)\)
3. Tìm GTLN của \(y=\dfrac{x^2+4}{x}\) trên \(\left(-\infty,0\right)\)
\(y=x+\dfrac{1}{x}-5\ge2\sqrt{\dfrac{x}{x}}-5=-3\)
\(y_{min}=-3\) khi \(x=1\)
\(y=4x^2+\dfrac{1}{2x}+\dfrac{1}{2x}-4\ge3\sqrt[3]{\dfrac{4x^2}{2x.2x}}-4=-1\)
\(y_{min}=-1\) khi \(x=\dfrac{1}{2}\)
\(y=x+\dfrac{4}{x}\Rightarrow y'=1-\dfrac{4}{x^2}=0\Rightarrow x=-2\)
\(y\left(-2\right)=-4\Rightarrow\max\limits_{x>0}y=-4\) khi \(x=-2\)
1.Cho f(x)= 5x2-x+2. Tìm x để f(x) đạt GTNN và tính GTNN đó?
2. Cho f(x)= 2/3x2 -1/5x.Tìm x để f(x) đạt GTNN và tính GTNN đó?
3. Cho f(x)= -5x2+4x+7.Tìm x để f(x) đạt GTLN và tính GTLN đó?
4. Cho f(x)= -4/3x2+ 2/15x.Tìm x để f(x) đạt GTLN và tính GTLN đó?
help me voi
tìm GTLN A= \(\frac{x^2}{\left(x^2+2\right)^2}\)
tìm GTNN A = \(\frac{x^5+2}{x^3}\) , x>0
tìm GTNN A= \(\frac{x^3+1}{x^2}\)
1. Vì \(x^2\ge0\left(\text{ với mọi x}\right)\)(1)
=>\(x^2+2\ge2>0\)
=>\(\left(x^2+2\right)^2>0\)(2)
Từ (1) và (2) =>\(\frac{x^2}{\left(x^2+2\right)^2}\le\frac{0}{\left(x^2+2\right)^2}=0\) hay A\(\le0\)
=> giá trị lớn nhất của A là 0, khi và chỉ khi \(x^2=0\) <=> x=0.
Gọi M, m lần lượt là GTLN, GTNN của hàm số f(x) = (x2 – 3)ex trên đoạn [0; 2]. Giá trị biểu thức A = (m2 – 4M)2016 bằng:
A. 1
B. 22016
C. 0
D. e2016
Chọn C.
f'(x) = 2xex + ex(x2 – 3) = 0
Ta có f(0) = -3
f(1) = -2e = m
f(2) = e2 = M
Suy ra (m2 – 4M)2016 = 0
Giúp mình với :
a)Tìm GTNN của A = \(\left|x^2-x+1\right|+\left|x^2-x-2\right|\)
b ) tìm GTNLN của D =\(\frac{x+2}{\left|x\right|}\)với x khác 0 và x thuộc Z
c) tìm GTLN của F=\(\frac{7x-8}{2x-3}\)với x thuộc N
d) Timf GTNN của G=\(x\left(x+1\right)+x+2\)
e) Tìm GTLN của J = \(x^4+2x^2-7\)
f) Tìm GTLN của biểu thức N = \(\left(x+2\right)^2-4x+2\)
G ) tìm GTLN của T= \(4\left(3-\left|x-1\right|\right)+\left|1-x\right|\)
f(x)=(2x-3)^2+(x+4)^2-(3x^2+5x-2) tìm GTNN
F=2x^2+3y^2-8x+24y-7 tìm GTNN
F=-5x^2-4y^2+20x-32y+9 tìm GTLN
F=x^2+y^2-x+y-3 tìm GTNN
F=F=5x^2+y^2-4xy-6x+20 tìm GTNN
F=-13x^2-4y^2+12xy+20x+37
F=5x^2+9y^2-12xy+24x-48y+100
Cho x+y=5 Cho A= x^3+y^3-8(x^2+y^2)+xy+2 tính GTLN của A
Cho x+y+2=0 Tìm min của B=2(x^3+y^3)-15xy+7
Cho x+y+2=0 tìm min của C=x^4+y^4-(x^3+y^3)+2x^2y^2+2xy(x^2+y^2)+13xy