Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Big City Boy
Xem chi tiết
Hoàng Phúc
Xem chi tiết
o0o Hinata o0o
16 tháng 6 2016 lúc 14:27

bạn sử dụng BĐT tam giác :

a  <  b + c => a2 < b2 + c2

b < a + c => b2 < a2 + c2

c < a + b => c2 < a2 + b2

bạn tự làm nhé vì mik làm bạn cũng ko chọn mik

Thắng Nguyễn
16 tháng 6 2016 lúc 15:49

Ta có:A = a+ b+ c- 2a2b- 2b2c- 2a2c= (a2)+ (b2)+ (c2)+ 2a2b- 2b2c- 2a2c+

4a2b= (a2+b2-c2)2-4a2b2

=(a2+b2-c2-2ab)(a2+b2-c2+2ab) (1)

Vì a;b;c là 3 cạnh của tam giác nên c>|a-b| =>c2>(|a-b|)2=(a-b)2

=>c2>a2+b2-2ab =>a2+b2-c2-2ab<0 (2)

lại có a+b>c =>(a+b)2>c2 =>a2+b2-c2 +2ab > 0 (3)

Từ (1)(2)(3) =>A<0 (Đpcm)

Hoàng Phúc
16 tháng 6 2016 lúc 17:39

#Thắng: t ko nghĩ ông lại copy trong CHTT đấy, mà sai rồi, đề là CM>0; ông lại CM < 0

Lê Hữu Minh
Xem chi tiết
nhóc naruto
Xem chi tiết
nhóc naruto
Xem chi tiết
nhóc naruto
Xem chi tiết
nhóc naruto
Xem chi tiết
tống thị quỳnh
Xem chi tiết
vũ tiền châu
31 tháng 1 2018 lúc 21:18

Xét \(a^4+b^4+c^4-2a^2b^2-2b^2c^2-2c^2a^2=\left(a^4-2a^2b^2+b^4\right)-2c^2\left(a^2-b^2\right)+c^4-4c^2b^2\)

=\(\left(a^2-b^2\right)^2-2\left(a^2-b^2\right)c^2+c^4-4c^2b^2=\left(a^2-b^2-c^2\right)^2-4c^2b^2\)

=\(\left(a^2-b^2-c^2-2bc\right)\left(a^2-b^2-c^2+2bc\right)=\left[a^2-\left(b+c\right)^2\right]\left[a^2-\left(b-c\right)^2\right]\)

=\(\left(a-b-c\right)\left(a+b+c\right)\left(a-b+c\right)\left(a+b-c\right)\)

Mà a,b,c là 3 cạnh tam giác => a-b-c<0 ;a+b+c>0;a-b+c>0;a+b-c>0 

=>\(...< 0\Rightarrow a^4+b^4+c^4< 2a^2b^2+2b^2c^2+2c^2a^2\left(ĐPCM\right)\)

Nguyễn Duy Khánh
31 tháng 1 2018 lúc 21:24

ta có\(a^4+b^4+c^4< 2a^2b^2+2c^2a^2+2b^2c^2\)

<=> \(-a^4-b^4-c^4+2a^2b^2+2a^2c^2+2b^2c^2>0\)

<=>\(4a^2c^2-\left(a^4+b^4+c^4-2a^2b^2+2a^2c^2-2b^2c^2\right)>0\)

<=> \(4a^2c^2-\left(a^2-b^2+c^2\right)^2>0\)

<=>.......

<=>(a+b+c)(a+c-b)(a+b-c)(b-a+c)>0

luôn đúng vì a,b,c là 3 cạnh của 1 tam giác 

vậy bđt trên dc cm dễ dàng

Mai Nguyen
Xem chi tiết