chứng minh rằng nếu đường thẳng c cắt 2 đường thẳng a;b và trong các góc tạo thành có 1 cặp cặp góc so le trong bằng nhau thì 2 góc trong cùng phía bù nhau
: Cho AB = 3cm. Đường trung trực của đoạn thẳng AB cắt AB tại M. Kẻ đường thẳng a vuông góc với AB tại A, đường thẳng b vuông góc với AB tại B. Qua điểm E bất kỳ trên đường thẳng a, vẽ đường thẳng song song với AB, đường thẳng đó cắt b tại F.
a) Chứng minh rằng: a // b.
b) Chứng minh rằng: EF FB.
c) Chứng minh rằng: đường thẳng MF cắt đường thẳng a
Cho tam giác ABC và M là trung điểm của AB . Qua M kẻ đường thẳng a//BC. Qua C kẻ đường thẳng b//AB. Đường thẳng a cắt AC tại N. Đường thẳng a cắt đừong thẳng b tại D.
a) Nối M và C. Chứng minh rằng MBC = CDM. Từ đó, hãy suy ra MB = CD và MD = BC;
b) Chứng minh rằng AMN = CDN.
c) Chứng minh rằng NA = NC và MN = 1/2 BC.
Cho tam giác ABC, Chứng minh rằng
- Nếu đường thẳng m song song vs cạnh BC thì m sẽ cắt các đường thẳng AB, AC.
- Nếu đường thẳng m song song vs cạnh BC và cắt cạnh AB thì m sẽ cắt cạnh AC.
Hình bạn tự vẽ!
a) Giả sử m không cắt \(AB,AC\). Thật vậy
=> \(m\) // \(AB\) và \(m\) // \(BC.\)
=> \(AB\) // \(AC\) // \(BC\) (vô lí với gt \(\Delta ABC\))
=> \(m\) sẽ cắt các đường thẳng \(AB,AC.\)
Vậy ta có đpcm.
b) Gỉa sử m không cắt \(AC.\) Thậy vậy
=> \(m\) // \(AC\)
=> \(AC\) // \(BC\) (vô lí với gt \(\Delta ABC\))
=> \(m\) sẽ cắt cạnh \(AC.\)
Vậy ta có đpcm.
Chúc bạn học tốt!
Cho 2 đường thẳng MN,PQ cắt nhau tại A và A là trung điểm của mỗi đoạn thẳng. Cho I là trung điểm của đoạn thẳng MQ. Đường thẳng AI cắt PN tạiR
a) chứng minh rằng: tam giác AMQ= Tam giác ANP
b) chứng minh rằng:MQ//PN
c) chứng minh rằng: RP=RN
a) Xét \(\Delta AMQ,\Delta ANP\) có :
\(AM=AN\) (A là trung điểm của MN)
\(\widehat{MAQ}=\widehat{NAP}\) (đối đỉnh)
\(AQ=AP\) (A là trung điểm của QP)
=> \(\Delta AMQ=\Delta ANP\left(c.g.c\right)\) (*)
b) Từ (*) suy ra : \(\left\{{}\begin{matrix}\widehat{MQA}=\widehat{NPA}\\\widehat{QMA}=\widehat{PNA}\end{matrix}\right.\) (2 góc tương ứng)
Mà thấy : Mỗi cặp góc bằng nhau ở vị trí so le trong
=> \(MQ//PN\left(đpcm\right)\)
c) Ta có : \(MQ=PN\) [từ (*)]
Lại có : \(IM=IQ\) (I là trung điểm của MQ)
Suy ra : \(RP=RN\rightarrowđpcm\)
Chứng minh rằng nếu 1 đường thẳng cắt 2 đường thẳng song song thì:
Các tia phân giác của 2 góc so le trong song song với nhau
Vì a//b \(\Rightarrow\widehat{A_3}=\widehat{B_3}\left(slt\right)\) (1)
Vì AC là phân giác của \(\widehat{A_3}\Rightarrow\widehat{A_2}=\widehat{\dfrac{A_3}{2}}\left(2\right)\)
Vì BD là phân giác của \(\widehat{B_3}\Rightarrow\widehat{B_2}=\widehat{\dfrac{B_3}{2}}\left(3\right)\)
Từ \(\left(1\right);\left(2\right);\left(3\right)\Rightarrow\widehat{A_2}=\widehat{B_2}\) \(\)
Mà \(\widehat{A_2}\) và \(\widehat{B_2}\) là hai góc ở vị trí so le trong
\(\Rightarrow AC//BD\)
Vậy...
Chứng minh rằng nếu 1 đường thẳng cắt hai đường thẳng song song thì 2 góc so le trong bằng nhau
để thời áp dụng vào tính chất 1 đg thẳng cắt 2 đường thẳng
Cho a//b. vẽ đường thẳng c cắt đường thẳng a tại điểm H.
Chứng minh rằng: c cũng cắt b
giả sử c ko cắt b.
suy ra c//b. Theo tiên đề Ơ-cơ-lit, qua 1 điểm cho trước ( điểm H đóa) ta chỉ vẽ được 1 và chỉ 1 đường thẳng // với 1 đường thẳng đã cho. Ở đây vẽ dc c//a và c//b => mâu thuẫn
Vậy c cắt b b tick **** chi mik nhs
Chứng Minh rằng
a ) " Nếu một đường thẳng cắt hai đường thẳng // thì hai góc đồng vị = nhau"
b) "Nếu một đường thẳng cắt hai đường thẳng // thì "
_ hai góc so le trong = nhau
_ hai góc trong cùng phía bù nhau
Cho hai đường thẳng xx’, yy’cắt nhau tại O
a) Chứng minh rằng hai tia phân giác Ot, Ot’ của một cặp góc kề bù tạo thành một góc vuông.
b) Chứng minh rằng : Nếu M thuộc đường thẳng Ot hoặc thuộc đường thẳng Ot’ thì M cách đều hai đường thẳng xx’, yy’
c) Chứng minh rằng : Nếu M cách đều hai đường thẳng xx’, yy’ thì M thuộc đường thẳng Ot hoặc thuộc đường thẳng Ot’
d) Khi M ≡ O thì khoảng cách từ M đến xx’ và yy’ bằng bao nhiêu ?
e) Em có nhận xét gì về tập hợp các điểm cách đều hai đường thẳng cắt nhau xx’ và yy’
Giải
a) Vì Ot là phân giác của ˆxOyxOy^
nên ˆyOtyOt^ = ˆxOtxOt^ = 1212ˆxOyxOy^
Ot' là phân giác của ˆxOy′xOy′^
nên ˆxOt′xOt′^ = ˆy′Ot′y′Ot′^ = 1212ˆxOy′xOy′^
=> ˆxOtxOt^ + ˆxOt′xOt′^ = 1212ˆxOyxOy^ + 1212ˆxOy′xOy′^ = 1212(ˆxOyxOy^ + ˆxOy′xOy′^)
mà (ˆxOyxOy^ + ˆxOy′xOy′^) = 1800 (2 góc kề bù)
=> ˆxOtxOt^ + ˆxOt′xOt′^ = 12121800 = 900
Vậy hai tia phân giác của hai góc kề bù tạo thành một góc vuông
b) Nếu M thuộc Ot hoặc Ot' thì M cách đều hai đường thẳng xx' và yy'
Thật vậy: M ε Ot do Ot là phân giác của ˆxOyxOy^ nên M cách đều Ox, Oy
=> M cách đều xx',yy'
M ε Ot'do Ot' là phân giác của ˆxOy′xOy′^ nên M cách đều xx', yy'
=> M cách đều xx',yy'
c) M cách đều hai đường thẳng xx', yy'
Nếu M nằm trong một góc trong bốn góc ˆxOyxOy^, ˆxOy′xOy′^, ˆx′Oy′x′Oy′^, ˆx′Oyx′Oy^ thì M phải thuộc phân giác của góc ây tức M phải thuộc Ot hoặc Ot'
d) Khi M ≡ O thì khoảng cách từ M đến xx', yy' bằng 0
e) Từ các câu trên ta có nhận xét: Tập hợp tất cả các điểm cách đều hai đường thẳng cắt nhau xx', yy' thuộc hai đường thẳng vuông góc nhau lần lượt là phân giác của các góc tạo bởi hai đường thẳng cắt nhau đó.
a) Vì Ot là phân giác của ˆxOyxOy^
nên ˆyOtyOt^ = ˆxOtxOt^ = 1212ˆxOyxOy^
Ot' là phân giác của ˆxOy′xOy′^
nên ˆxOt′xOt′^ = ˆy′Ot′y′Ot′^ = 1212ˆxOy′xOy′^
=> ˆxOtxOt^ + ˆxOt′xOt′^ = 1212ˆxOyxOy^ + 1212ˆxOy′xOy′^ = 1212(ˆxOyxOy^ + ˆxOy′xOy′^)
mà (ˆxOyxOy^ + ˆxOy′xOy′^) = 180
0
(2 góc kề bù)
=> ˆxOtxOt^ + ˆxOt′xOt′^ = 1212180
0 = 90
0
Vậy hai tia phân giác của hai góc kề bù tạo thành một góc vuông
b) Nếu M thuộc Ot hoặc Ot' thì M cách đều hai đường thẳng xx' và yy'
Thật vậy: M ε Ot do Ot là phân giác của ˆxOyxOy^ nên M cách đều Ox, Oy
=> M cách đều xx',yy'
M ε Ot'do Ot' là phân giác của ˆxOy′xOy′^ nên M cách đều xx', yy'
=> M cách đều xx',yy'
c) M cách đều hai đường thẳng xx', yy'
Nếu M nằm trong một góc trong bốn góc ˆxOyxOy^, ˆxOy′xOy′^, ˆx′Oy′x′Oy′^, ˆx′Oyx′Oy^ thì M phải thuộc phân giác của góc ây tức M phải thuộc Ot hoặc Ot'
d) Khi M ≡ O thì khoảng cách từ M đến xx', yy' bằng 0
e) Từ các câu trên ta có nhận xét: Tập hợp tất cả các điểm cách đều hai đường thẳng cắt nhau xx', yy' thuộc hai đường thẳng vuông góc nhau lần lượt là phân giác của các góc tạo
bởi hai đường thẳng cắt nhau đó.