Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
huongkarry
Xem chi tiết
Diệu Hoàng Minh
Xem chi tiết
Diệu Hoàng Minh
Xem chi tiết
Nguyễn Thị Cẩm Nhi
Xem chi tiết
Phùng Minh Quân
3 tháng 11 2018 lúc 17:55

\(\frac{1}{\sqrt{x+1}+\sqrt{x+2}}+\frac{1}{\sqrt{x+2}+\sqrt{x+3}}+...+\frac{1}{\sqrt{x+2019}+\sqrt{x+2020}}=11\)

\(\Leftrightarrow\)\(\frac{\sqrt{x+2}-\sqrt{x+1}}{\left(\sqrt{x+1}+\sqrt{x+2}\right)\left(\sqrt{x+2}-\sqrt{x+1}\right)}+\frac{\sqrt{x+3}-\sqrt{x+2}}{\left(\sqrt{x+2}+\sqrt{x+3}\right)\left(\sqrt{x+3}-\sqrt{x+2}\right)}\)

\(+...+\frac{\sqrt{x+2020}-\sqrt{x+2019}}{\left(\sqrt{x+2019}+\sqrt{x+2020}\right)\left(\sqrt{x+2020}-\sqrt{x+2019}\right)}=11\)

\(\Leftrightarrow\)\(\frac{\sqrt{x+2}-\sqrt{x+1}}{x+2-x-1}+\frac{\sqrt{x+3}-\sqrt{x+2}}{x+3-x-2}+...+\frac{\sqrt{x+2020}-\sqrt{x+2019}}{x+2020-x-2019}=11\)

\(\Leftrightarrow\)\(\sqrt{x+2}-\sqrt{x+1}+\sqrt{x+3}-\sqrt{x+2}+...+\sqrt{x+2020}-\sqrt{x+2019}=11\)

\(\Leftrightarrow\)\(\sqrt{x+2020}-\sqrt{x+1}=11\)

\(\Leftrightarrow\)\(\sqrt{x+2020}=11+\sqrt{x+1}\)

\(\Leftrightarrow\)\(x+2020=121+22\sqrt{x+1}+x+1\)

\(\Leftrightarrow\)\(22\sqrt{x+1}=1898\)

\(\Leftrightarrow\)\(\sqrt{x+1}=\frac{949}{11}\)

\(\Leftrightarrow\)\(\orbr{\begin{cases}x+1=\frac{900601}{121}\\x+1=\frac{-900601}{121}\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{900480}{121}\\x=\frac{-900722}{121}\end{cases}}\)

Chúc bạn học tốt ~ 

PS : sai thì thui nhá 

Trần Phúc
3 tháng 11 2018 lúc 20:21

Bài của bạn Quân làm đúng ùi nhưng mà căn thì không ra số âm nhé!

Trần Tuấn Đạt
Xem chi tiết
Nguyễn Hoàng Liên
Xem chi tiết
Lương Ngọc Anh
10 tháng 6 2016 lúc 14:57

ĐKXĐ:x khác 0

Trục căn thức ở mẫu ta được:

\(\left(\sqrt{x+3}-\sqrt{x+2}\right)+\left(\sqrt{x+2}-\sqrt{x+1}\right)+\left(\sqrt{x+1}-\sqrt{x}\right)=1.\)

<=> \(\sqrt{x+3}=\sqrt{x}+1\)

<=> \(x+3=x+2\sqrt{x}+1\)

=> 2\(\sqrt{x}=2\)

=> x=1

Hoàng Lê Bảo Ngọc
10 tháng 6 2016 lúc 15:09

\(\frac{1}{\sqrt{x+3}+\sqrt{x+2}}+\frac{1}{\sqrt{x+2}+\sqrt{x+1}}+\frac{1}{\sqrt{x+1}+\sqrt{x}}=1\left(DKXD:x\ge0\right)\)

\(\Rightarrow\frac{\sqrt{x+3}-\sqrt{x+2}}{\left(x+3\right)-\left(x+2\right)}+\frac{\sqrt{x+2}-\sqrt{x+1}}{\left(x+2\right)-\left(x+1\right)}+\frac{\sqrt{x+1}-\sqrt{x}}{\left(x+1\right)-x}=1\)

\(\Leftrightarrow\sqrt{x+3}-\sqrt{x+2}+\sqrt{x+2}-\sqrt{x+1}+\sqrt{x+1}-\sqrt{x}=1\)

\(\Leftrightarrow\sqrt{x+3}-\sqrt{x}=1\Leftrightarrow x+3=\left(1+\sqrt{x}\right)^2\Leftrightarrow x+3=x+1+2\sqrt{x}\Leftrightarrow\sqrt{x}=1\Leftrightarrow x=1\left(TMDK\right)\)

Vậy tập nghiệm của phương trình : \(S=\left\{1\right\}\)

Hoàng Phúc
Xem chi tiết
alibaba nguyễn
30 tháng 10 2016 lúc 6:56

Đặt \(\hept{\begin{cases}\sqrt{x-\frac{1}{x}}=a\\\sqrt{1-\frac{1}{x}}=b\end{cases}}\)

Ta có a2 - b2 = x - 1 từ đó ta có

a - b = (a2 - b2)/x

<=> (a - b)(\(1-\frac{a+b}{x}\)) = 0

<=> a = b

<=> x = 1

Võ Bùi Đức hoàng
22 tháng 10 2017 lúc 21:08

Bạn đó làm đúng rồi đò mình cũng có chung kết quả là  

X = 1

Nguyễn Huỳnh Minh Thư
Xem chi tiết
Vũ Đức
Xem chi tiết
Tạ Anh Tuấn
Xem chi tiết
Bùi Hồng Anh
25 tháng 11 2018 lúc 22:18

có pt mô mà giải

ĐKXĐ \(x\ge0,x\ne1\)