Chứng minh rằng 1/2^2+1/3^2+1/4^2+...+1/50^2<1
chứng minh rằng: 1/2^2+1/3^2+1/4^2+....+1/50^2<1
\(\frac{1}{2^2}\)+\(\frac{1}{3^2}\)+...+\(\frac{1}{50^2}\)<1
ta có \(\frac{1}{2^2}\)<\(\frac{1}{1.2}\)
\(\frac{1}{3^2}\)<\(\frac{1}{2.3}\)
..........................
\(\frac{1}{50^2}\)<\(\frac{1}{49.50}\)
ta được \(\frac{1}{1.2}\)+\(\frac{1}{2.3}\)+...+\(\frac{1}{49.50}\)
=>1-\(\frac{1}{2}\)+\(\frac{1}{2}\)-...-\(\frac{1}{49}\)+\(\frac{1}{49}\)-\(\frac{1}{50}\)
=>1-\(\frac{1}{50}\)<1 nên\(\frac{1}{2^2}\)+\(\frac{1}{3^2}\)+...+\(\frac{1}{50^2}\)<1
vậy ...........................
chứng minh rằng A=1/2^2+1/3^2+1/4^2+...+1/50^2<1
A = 1/2.2 + 1/3.3 + ......+ 1/50.50
A < 1/1.2 + 1/2.3 +......+ 1/49.50
A < 1 - 1/2 + 1/2 - 1/3 +.......+ 1/49 - 1/50
A < 1 - 1/50
A < 49/50 < 1
=> A < 1 (đpcm)
*****k nha
Ta có: A=1/2^2+1/3^2+1/4^2+...+1/50^2<1
=> A<1/1.2+1/2.3+1/3.4+........+1/50.51
=>A< ( 1/1+ -1/2+1/2+ -1/3+1/3+ -1/4+1/4+ -1/5+1/5+.....+1/50+ -1/51)
=> A<1/1+ -1/51
=>A<51/51+ -1/51 =50/51<1
Ta có:
1/2^2 < 1/1.2
1/3^2 < 1/2.3
......
1/50^2 < 1/49.50
=> A= 1/2^2+1/3^2+...+1/50^2 < 1/1.2+1/2.3+...+1/49.50 = 1-1/2+1/2-1/3+...+1/49-1/50 = 1-1/50<1 (ĐPCM)
Cho A = 1/3 mũ 2 +1/4 mũ 2 +...+1/50 mũ 2. Chứng minh rằng 1/4 < A < 4
Cho A=1/2^2+1/3^2+...+1/50^2.Chứng minh rằng a>1/4
1+1/2+1/3+1/4+...+1/2^100-1 chứng minh rằng 50<A<100
Ta có:
A=1+(1/2+1/3)+(1/4+1/5+1/6+1/7)+(1/8+1/9+......+1/15)+........+ (1/2^99+1/2^99+1+........+1/2^100-1)
(Có 99 nhóm) < 1+2.1/2+2^2.1/2^2+2^3.1/2^3+.....+2^99.1/2^99
=>1+1+1+.......+1 (100 số 1)=100
=>A1+1/2+2.1/2^2+2^2.1/2^3+2^3.1/2^4+.....+2^991/2^100-1-1/2^100 =1+1/2+1/2+1/2+1/2+........+1/2-1/2^100 (100 số 1/2)
=1+100.12-1/2^100
=50+1-1/2^100>50
=>A>50 (2)
Từ (1)và (2)=>50
A=1/1^2 + 1/2^2 + 1/3^2 + 1/4^2 +...+1/50^2
chứng minh rằng A<2
Ta có: A < \(\frac{1}{1^2}+\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}\)
Lại có: \(\frac{1}{1^2}+\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}=1+\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}\)
\(=1+\left(\frac{1}{1}-\frac{1}{50}\right)\)
\(=1+\frac{49}{50}\)
Mà 1+49/50<2 nên A<1+49/50<2
Vậy A<2
S = \(\dfrac{1}{1^2}\) +\(\dfrac{1}{2^2}\)+\(\dfrac{1}{3^2}\)+\(\dfrac{1}{4^2}\)+....+\(\dfrac{1}{50^2}\). Chứng minh rằng S < 2
1/2^2+1/3^2+...+1/50^2<1/1*2+1/2*3*+...+1/49*50
=1/1-1/2+1/2-1/3+...+1/49-1/50<1
=>S<1+1=2
Chứng minh rằng: 1/2² + 1/3² + 1/4² +.......+1/50² < 1
Vì các p/s bé hơn 1 nên tổng nó bé hơn 1
thế thui
CM: A = \(\dfrac{1}{2^2}\) + \(\dfrac{1}{3^2}\) + \(\dfrac{1}{4^2}\)+...+ \(\dfrac{1}{50^2}\) < 1
\(\dfrac{1}{2^2}\) < \(\dfrac{1}{1.2}\) = \(\dfrac{1}{1}\) - \(\dfrac{1}{2}\)
\(\dfrac{1}{3^2}\) < \(\dfrac{1}{2.3}\) = \(\dfrac{1}{2}\) - \(\dfrac{1}{3}\)
.............................
\(\dfrac{1}{50^2}\) < \(\dfrac{1}{49.50}\) = \(\dfrac{1}{49}\) - \(\dfrac{1}{50}\)
Cộng vế với vế ta có:
A < \(\dfrac{1}{1}\) - \(\dfrac{1}{2}\) + \(\dfrac{1}{2}\) - \(\dfrac{1}{3}\) + ... + \(\dfrac{1}{49}\) - \(\dfrac{1}{50}\)
A < 1 - \(\dfrac{1}{50}\)
A < 1 (đpcm)
Cho S=1/2^2 + 1/3^2 + 1/4^2 +...+ 1/50^2
Chứng minh rằng S<4/9