Chứng minh:
tan2x + cot2x = \(\frac{6+2cos4x}{1-cos4x}\)
Rút gọn
A= \(\frac{cosx-cos2x-cos3x+cos4x}{sinx-sin2x-sin3x+sin4x}\)
B= sinx(1+2cos2x+2cos4x+2cos6x)
\(A=\frac{cosx-cos3x+cos4x-cos2x}{sinx-sin3x+sin4x-sin2x}=\frac{2sin2x.sinx-2sin3x.sinx}{-2cos2x.sinx+2cos3x.sinx}\)
\(=\frac{sin2x-sin3x}{cos3x-cos2x}=\frac{-2cos\left(\frac{5x}{2}\right)sin\left(\frac{x}{2}\right)}{-2sin\left(\frac{5x}{2}\right)sin\left(\frac{x}{2}\right)}=cot\left(\frac{5x}{2}\right)\)
\(B=sinx+2cos2x.sinx+2cos4x.sinx+2cos6x.sinx\)
\(=sinx+sin3x-sinx+sin5x-sin3x+sin7x-sin5x\)
\(=sin7x\)
Rút gọn biểu thức: \(A=\frac{\tan^2x-1}{2}\cot x+\cos4x\cot2x+\sin4x\)
\(A=\frac{1}{2}\left(\frac{sin^2x}{cos^2x}-1\right)\frac{cosx}{sinx}+cos4x.cot2x+sin4x\)
\(A=\frac{-1}{2}\left(\frac{cos^2x-sin^2x}{cos^2x}\right)\frac{cosx}{sinx}+cos4x.cot2x+sin4x\)
\(A=\frac{-cos2x}{2cosx.sinx}+cos4x.cot2x+sin4x\)
\(A=-cot2x+cos4x.cot2x+sin4x\)
\(A=cot2x\left(cos4x-1\right)+sin4x\)
\(A=\frac{cos2x}{sin2x}.\left(1-2sin^22x-1\right)+sin4x\)
\(A=\frac{-2cos2x.sin^22x}{sin2x}+sin4x\)
\(A=-sin4x+sin4x=0\)
Mọi người giúp mình bài này với (lớp 11)
1) \(\text{ 2cos4x*(cos2x-cos4x)=0 (mình ko biết giải phần cos2x-cos4x)}\)
2) \(\frac{1}{2}\left(cos5x-cos7x\right)=cos^22x-cos^23x\)
3) \(sin^22x=sin^23x\)
Đăng lên chô khác đi :D đây toàn lớp THCS có lẽ ít ai giải :v
vị dụ VMF , HMF, h,...................................><
Rút gọn các biểu thức sau:
D = \(\frac{1+sin2x+cos2x}{1+sin2x-cos2x}\)E = \(\frac{sin2x+2sin3x+sin4x}{cos3x+2cos4x-cos5x}\)F = \(\frac{sinx+sin4x+sin7x}{cosx+cos4x+cos7x}\)G = \(\frac{cos2x-sin4x-cos6x}{cos2x+sin4x-cos6x}\)\(D=\frac{1+sin2x+cos2x}{1+sin2x-cos2x}=\frac{1+2sinxcosx+2cos^2x-1}{1+2sinxcosx-1+2sin^2x}\)
\(D=\frac{cosx\left(sinx+cosx\right)}{sinx\left(sinx+cosx\right)}=cotx\)
\(F=\frac{sinx+sin4x+sin7x}{cosx+cos4x+cos7x}\)
\(F=\frac{2sin4xcos3x+sin4x}{2cos4xcos3x+cos4x}\)
\(F=\frac{2sin4x\left(cos3x+1\right)}{2cos4x\left(cos3x+1\right)}=tan4x\)
\(G=\frac{cos2x-sin4x-cos6x}{cos2x+sin4x-cos6x}=\frac{-2sin4xsin2x-sin4x}{-2sin4xsin2x+sin4x}\)
\(G=\frac{-sin4x\left(2sin2x+1\right)}{-sin4x\left(2sin2x-1\right)}=\frac{2sin2x+1}{2sin2x-1}\)
Biểu thức B= sin 4 x + cos 4 x - 1 tan 2 x + c o t 2 x + 2 có giá trị không đổi bằng:
A. 2
B. 1
C. -2
D. -1
Biểu thức B = sin 4 x + cos 4 x − 1 tan 2 x + cot 2 x + 2 có giá trị không đổi bằng:
A. 2
B. 1
C. -2
D. -1
\(\cos4x-\cos3x-\cot2x-\cos x=0\)
Nguồn: Học sinh TT
Giải các phương trình :
1) \(\frac{\sin^4x+\cos^4x}{\sin2x}=\frac{1}{2}\left(\tan x+\cot2x\right)\)
2) \(\frac{1}{\sin x}+\frac{1}{\sin\left(x-\frac{3\pi}{2}\right)}=4\sin\left(\frac{7\pi}{4}-x\right)\)
3)\(2\left(\cos^42x-\sin^42x\right)+\cos8x-\cos4x=0\)
4)\(\frac{\sin^4x+\cos^4x}{5\sin2x}=\frac{1}{2}\cot2x-\frac{1}{8\sin2x}\)
5)\(\sin^4x+\cos^4x-3\sin2x+\frac{5}{2}\sin^22x=0\)
1/Chứng minh rằng :
a/ cot\(^2\)x \(-cos^2x=cot^2x.cos^2x\)
b/ \(\frac{cosx+sinx}{cosx-sinx}-\frac{cosx-sinx}{cosx+sinx}=2tan2x\)
c/ \(\frac{sin4x+cos2x}{1+sin2x-cos4x}=cot2x\)
2/ Rút gọn biểu thức
A=\(sin^3+sin^2xcosx+sinxcos^2x+cos^3x\)
B=\(tanx\left(\frac{1+cos^2x}{sinx}-sinx\right)\)
\(cot^2x-cos^2x=\frac{cos^2x}{sin^2x}-cos^2x=cos^2x\left(\frac{1}{sin^2x}-1\right)=\frac{cos^2x\left(1-sin^2x\right)}{sin^2x}\)
\(=cos^2x.\left(\frac{cos^2x}{sin^2x}\right)=cot^2x.cos^2x\)
\(\frac{cosx+sinx}{cosx-sinx}-\frac{cosx-sinx}{cosx+sinx}=\frac{\left(cosx+sinx\right)^2-\left(cosx-sinx\right)^2}{\left(cosx-sinx\right)\left(cosx+sinx\right)}\)
\(=\frac{cos^2x+sin^2x+2sinx.cosx-\left(cos^2x+sin^2x-2sinx.cosx\right)}{cos^2x-sin^2x}=\frac{4sinx.cosx}{cos2x}=\frac{2sin2x}{cos2x}=2tan2x\)
\(\frac{sin4x+cos2x}{1-cos4x+sin2x}=\frac{2sin2x.cos2x+cos2x}{1-\left(1-2sin^22x\right)+sin2x}=\frac{cos2x\left(2sin2x+1\right)}{sin2x\left(2sin2x+1\right)}=\frac{cos2x}{sin2x}=cot2x\)
\(A=sin^2x\left(sinx+cosx\right)+cos^2x\left(sinx+cosx\right)\)
\(=\left(sin^2x+cos^2x\right)\left(sinx+cosx\right)=sinx+cosx\)
\(B=\frac{sinx}{cosx}\left(\frac{1+cos^2x-sin^2x}{sinx}\right)=\frac{sinx}{cosx}\left(\frac{2cos^2x}{sinx}\right)=2cosx\)