tìm x,y,z nguyên
x2+y2+z2-xy-3y-2z+4=0
1). x2y2(y-x)+y2z2(z-y)-z2x2(z-x)
2)xyz-(xy+yz+xz)+(x+y+z)-1
3)yz(y+z)+xz(z-x)-xy(x+y)
4)2a2b+4ab2-a2c+ac2-4b2c+2bc2-4abc
5)y(x-2z)2+8xyz+x(y-2z)2-2z(x+y)2
6)8x3(y+z)-y3(z+2x)-z3(2x-y)
7) (x2+y2)3+(z2-x2)3-(y2+z2)3
1). x2y2(y-x)+y2z2(z-y)-z2x2(z-x)
2)xyz-(xy+yz+xz)+(x+y+z)-1
3)yz(y+z)+xz(z-x)-xy(x+y)
4)2a2b+4ab2-a2c+ac2-4b2c+2bc2-4abc
5)y(x-2z)2+8xyz+x(y-2z)2-2z(x+y)2
6)8x3(y+z)-y3(z+2x)-z3(2x-y)
7) (x2+y2)3+(z2-x2)3-(y2+z2)3
bn gõ bài trong công thức trực quan ik, khó nhìn lắm, ko làm đc
1) \(x^2y^2\left(y-x\right)+y^2z^2\left(z-y\right)-z^2x^2\left(z-x\right)\)
\(=x^2y^3-x^3y^2+y^2z^3-y^3z^2-z^2x^2\left(z-x\right)\)
\(=\left(y^2z^3-x^3y^2\right)-\left(y^3z^2-x^2y^3\right)-z^2x^2\left(z-x\right)\)
\(=y^2\left(z^3-x^3\right)-y^3\left(z^2-x^2\right)-z^2x^2\left(z-x\right)\)
\(=y^2\left(z-x\right)\left(z^2+zx+x^2\right)-y^3\left(z-x\right)\left(z+x\right)-z^2x^2\left(z-x\right)\)
\(=\left(z-x\right)\left[y^2\left(z^2+zx+x^2\right)-y^3\left(z+x\right)-z^2x^2\right]\)
\(=\left(z-x\right)\left[\left(y^2z^2+xy^2z+x^2y^2\right)-\left(y^3z+xy^3\right)-z^2x^2\right]\)
\(=\left(z-x\right)\left(y^2z^2+xy^2z+x^2y^2-y^3z-xy^3-z^2x^2\right)\)
\(=\left(z-x\right)\left[\left(y^2z^2-y^3z\right)-\left(x^2z^2-x^2y^2\right)+\left(xy^2z-xy^3\right)\right]\)
\(=\left(z-x\right)\left[y^2z\left(z-y\right)-x^2\left(z^2-y^2\right)+xy^2\left(z-y\right)\right]\)
\(=\left(z-x\right)\left[y^2z\left(z-y\right)-x^2\left(z-y\right)\left(z+y\right)+xy^2\left(z-y\right)\right]\)
\(=\left(z-x\right)\left(z-y\right)\left[y^2z-x^2\left(z+y\right)+xy^2\right]\)
\(=\left(z-x\right)\left(z-y\right)\left(y^2z-x^2z-x^2y+xy^2\right)\)
\(=\left(z-x\right)\left(z-y\right)\left[\left(y^2z-x^2z\right)-\left(x^2y-xy^2\right)\right]\)
\(=\left(z-x\right)\left(z-y\right)\left[z\left(y^2-x^2\right)-xy\left(x-y\right)\right]\)
\(=\left(z-x\right)\left(z-y\right)\left[z\left(y-x\right)\left(y+x\right)+xy\left(y-x\right)\right]\)
\(=\left(z-x\right)\left(z-y\right)\left(y-x\right)\left[z\left(y+x\right)+xy\right]\)
\(=\left(z-x\right)\left(z-y\right)\left(y-x\right)\left(yz+xz+xy\right)\)
2) \(xyz-\left(xy+yz+xz\right)+\left(x+y+z\right)-1\)
\(=xyz-xy-yz-xz+x+y+z-1\)
\(=\left(xyz-xy\right)-\left(yz-y\right)-\left(xz-x\right)+\left(z-1\right)\)
\(=xy\left(z-1\right)-y\left(z-1\right)-x\left(z-1\right)+\left(z-1\right)\)
\(=\left(z-1\right)\left(xy-y-x+1\right)\)
\(=\left(z-1\right)\left[\left(xy-y\right)-\left(x-1\right)\right]\)
\(=\left(z-1\right)\left[y\left(x-1\right)-\left(x-1\right)\right]\)
\(=\left(z-1\right)\left(x-1\right)\left(y-1\right)\)
Cho (I): 4 x 2 + 4x – 9 y 2 + 1 = (2x + 1 + 3y)(2x + 1 – 3y)
(II): 5 x 2 – 10xy + 5 y 2 – 20 z 2 = 5(x + y + 2z)(x + y – 2z).
A. (I) đúng, (II) sai
B. (I) sai, (II) đúng
C. (I), (II) đều sai
D. (I), (II) đều đúng
Ta có
(I): 4 x 2 + 4 x – 9 y 2 + 1 = ( 4 x 2 + 4 x + 1 ) – 9 y 2 = ( 2 x + 1 ) 2 – ( 3 y ) 2
= (2x + 1 + 3y)(2x + 1 – 3y) nên (I) đúng
Và
(II):
5 x 2 – 10 x y + 5 y 2 – 20 z 2 = 5 ( x 2 – 2 x y + y 2 – 4 z 2 ) = 5 [ ( x – y ) 2 – ( 2 z ) 2 ]
= 5(x – y – 2z)(x – y + 2z) nên (II) sai
Đáp án cần chọn là: A
tìm x,y,z nguyên sao cho x2+y2+z2+6<xy+3x+4z
Cho x,y,z là các số thực dương thoả mãn x2-y2+z2=xy+3yz+zx
Tìm Max P=\(\dfrac{x}{(2y+z)^{2}}+\dfrac{1}{xy(y+2z)}\)
tìm x ; y ; z nguyên sao cho : x^2 + y^2 + z^2 -xy -3y - 2z + 4 = 0
Tìm tất cả các số \(x,y,z\) nguyên thỏa mãn: \(x^2+y^2+z^2-xy-3y-2z+4=0\)
c) C = x(y2 +z2)+y(z2 +x2)+z(x2 +y2)+2xyz.
d) D = x3(y−z)+y3(z−x)+z3(x−y).
e) E = (x+y)(x2 −y2)+(y+z)(y2 −z2)+(z+x)(z2 −x2).
b) x2 +2x−24 = 0.
d) 3x(x+4)−x2 −4x = 0.
f) (x−1)(x−3)(x+5)(x+7)−297 = 0.
(2x−1)2 −(x+3)2 = 0.
c) x3 −x2 +x+3 = 0.
e) (x2 +x+1)(x2 +x)−2 = 0.
a) A = x2(y−2z)+y2(z−x)+2z2(x−y)+xyz.
b) B = x(y3 +z3)+y(z3 +x3)+z(x3 +y3)+xyz(x+y+z). c) C = x(y2 −z2)−y(z2 −x2)+z(x2 −y2).
Đề bài yêu cầu gì vậy em.
cho ba số dương x, y , z thoả mãn x+y+z=3/4 chứng minh rằng
6(x2+y2+z2)+10(xy+yz+xz)+2(1/(2x+y+z)+1/(x+2y+z)+1/(x+y+2z))>=9
\(VT=6\left(x^2+y^2+z^2\right)+10\left(xy+yz+xz\right)+2\left(\frac{1}{2x+y+z}+\frac{1}{x+2y+z}+\frac{1}{x+y+2z}\right)\)
\(=6\left(x+y+z\right)^2-2\left(xy+yz+xz\right)+2\frac{9}{2x+y+z+x+2y+z+x+y+2z}\)
\(\ge6\left(x+y+z\right)^2-2\frac{\left(x+y+z\right)^2}{3}+2\frac{9}{4\left(x+y+z\right)}\)
\(=\: 6\cdot\left(\frac{3}{4}\right)^2-2\cdot\frac{\left(\frac{3}{4}\right)^2}{3}+2\cdot\frac{9}{4\cdot\frac{3}{4}}=9\)