cho P(X) x2014+2013x+2012 có nghiệm dương ko vì sao?
Cho đa thức P(x) = x^2014 + 2013x + 2012 có nghiệm dương không ? Vì sao ?
Cho đa thức:P(x)=x2014+2013x+2012 có nghiệm dương không?
Đa thức P(x) ko thể có nghiệm dương.
nếu x dương thì
x^2014 >= 1
2013.1 >=2013
=> P(x) >= 1+2013+2012=2016 => ko thể có nghiệm
Giả sử đa thức P(x) có nghiệm dương.
Khi đó: x>0 => 2013x>0
Mà x2014>=0 nên x2014+2013x>0=> P(x)=x2014+2013x+2012>=2012(trái với gt P(x)=0)
Vậy đa thức:P(x)=x2014+2013x+2012 không có nghiệm dương
Tìm nghiệm các đa thức:
a) -3x^3+5x^2-2x
b) -1/2x^4+1/8x^2
c)-1/3(3x+1)(5-2x)(2013x-2012)
d)3x^2-x-10
e)x^2-4x+3
cm đa thức ko có nghiệm
a)x^2+x-1
b)2013x^2012+1
c)4x^2-4x+3
1) Tìm tất cả các giá trị của m để đa thức A(x)=x^2-5mx+10m có hai nghiệm mà nghiệm này bằng 2 lần nghiệm kia
2)Cho đa thức P(x)=x^2014+2013x+2012 có nghiệm dương không? Vì sao?
Giúp giùm mình nha :3 :)
Bài 1:
\(A\left(x\right)=0\)
nên \(x^2-5mx+10m=0\)
\(\text{Δ}=\left(-5m\right)^2-4\cdot10m=25m^2-40m\)
Để phương trình có hai nghiệm thì m(25m-40)>0
=>m>8/5 hoặc m<0
Áp dụng Vi-et, ta được:
\(\left\{{}\begin{matrix}x_1+x_2=5m\\x_1x_2=10m\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_1=2x_2\\3x_2=5m\\x_1x_2=10m\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_2=\dfrac{5m}{3}\\x_1=\dfrac{10}{3}m\\\dfrac{50}{9}m^2-10m=0\end{matrix}\right.\Leftrightarrow m=\dfrac{9}{5}\)(nhận)
Bài 2: Tính
cho f(x) = x^2016 - 2013x^2015+ 2013x^2014 -2013x^2013 + ........+ 2013x^2 -2013x +2013
với f (2012)
Tính giá trị của đa thức:
F(x) = x^2013 - 2013x^2012 + 2013x^2011 - 2013x^2010 + ... + 2013x- 1 tại x = 2012
f(x) = x2013 - 2013x2012 + 2013x2011 - 2013x2010 + .... + 2013x - 1
= x2013 - (2012 + 1)x2012 + (2012 + 1)x2011 - (2012 + 1)x2010 + .... + (2012 + 1)x - 1
= x2013 - (x + 1)x2012 + (x + 1)x2011 - (x + 1)x2010 + .... + (x + 1)x - 1
= x2013 - x . x2012 - 1 . x2012 + x . x2011 + 1 . x2011 - x . x2010 - 1 . x2010 + ... + x . x + 1 . x - 1
= x2013 - x2013 - x2012 + x2012 + x2011 - x2011 - x2010 + .... + x2 + x - 1
= x - 1 = 2012 - 1 = 2011
Cho \(f\left(x\right)=x^{2013}-2013x^{2012}+2013x^{2011}-...+2013x-1\). Tính \(f\left(2012\right)\)
Cho \(f\left(x\right)=x^{2013}-2013x^{2012}+2013x^{2011}-...+2013x-1.\)Tính \(f\left(2012\right)\)
x=2012
nên x+1=2013
\(f\left(x\right)=x^{2013}-x^{2012}\left(x+1\right)+x^{2011}\left(x+1\right)-...-x^2\left(x+1\right)+x\left(x+1\right)-1\)
\(=x^{2013}-x^{2013}-x^{2012}+x^{2012}-...-x^3-x^2+x^2+x-1\)
=x-1
=2012-1=2011
Cho f(x)=x\(^{2013}\) + 2013x\(^{2012}\) + 2013x\(^{2011}\) - ..... +2013x -1. Tính f(2012)
x=2012
nên x+1=2013
\(f\left(x\right)=x^{2013}-x^{2012}\left(x+1\right)+x^{2011}\left(x+1\right)-...+x\left(x+1\right)-1\)
\(=x^{2013}-x^{2013}-x^{2012}+x^{2012}+x^{2011}-...+x^2+x+1\)
=x+1=2013