Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nam Dốt Toán
Xem chi tiết
Quỳnh Anh Phạm
11 tháng 4 2023 lúc 20:34

gọi d là ƯCLN(2n+1;3n+2).theo bài ra ta có:

2n+1 chia hết cho d=>6n+3 chia hết cho d

3n+2 chia hết cho d=>6n+4 chia hết cho d

=>1 chia hết cho d=>d=1

vậy ...

Võ Ngọc Phương
11 tháng 4 2023 lúc 20:41

Gọi d ϵ ƯCLN\(\left(\dfrac{2n+1}{3n+2}\right)\)

Nên 2n+1⁝ d và 3n+2 ⁝ d

⇒ 3(2n+1) ⁝ d và 2(3n+2)

⇒ 6n+3 ⁝ d và 6n+4 ⁝ d

⇒ ( 6n+4 - 6n+3) ⁝ d

⇒ 1⁝ d

⇒ d= 1

Vậy:..

Chúc bạn học tốt

Nguyễn Tuấn Phát
11 tháng 4 2023 lúc 20:43

ssss

Xem chi tiết
cà thái thành
30 tháng 4 2019 lúc 15:16

https://h.vn/hoi-dap/question/39186.html

Công chúa đáng yêu
30 tháng 4 2019 lúc 15:19

Gọi d là ƯCLN ( 2n + 1 ; 3n + 2 )( d thuộc N* )

=> 2n + 1 chia hết cho d ; 3n + 2 chia hết cho d  

=> 3( 2n + 1 ) chia hết cho d ; 2( 3n + 2 ) chia hết cho d

=> 6n + 3 chia hết cho d ; 6n + 4 chia hết cho d 

=> ( 6n + 4 ) - ( 6n + 3 ) chia hết cho d

=> 6n + 4 - 6n - 3 chia hết cho d 

=> 1 chia hết cho d

Mà d thuộc N* => d = 1

=> ƯCLN( 2n + 1 ; 3n + 2 ) = 1 

Chứng tỏ phân số 2n + 1/3n + 2 tối giản

Tẫn
30 tháng 4 2019 lúc 15:23

Gọi d là ƯC của 2n + 1 và 3n + 3

Ta có: 2n + 1 ⋮ d => 6n + 3 ⋮ d

Và 2n + 2 ⋮ d => 6n + 4 ⋮ d

Do đó:

 (6n + 4) - (6n + 3) ⋮ d

=> (6n - 6n) (4 - 3) ⋮ d

=> 1 ⋮ d => d = 1

Hay ƯC(2n + 1, 3n + 2) = 1 

=> 2n + 1 / 3n + 2 tối giản

HỒ THỊ TÚ TRINH
Xem chi tiết
dinhkhachoang
1 tháng 4 2016 lúc 10:35

GỌI Đ LÀ ƯC (2N+1/3N+2)

=>2N+2 CHIA HẾT CHO Đ=>3(2N+3) CHIA HẾT CHO Đ

=>3N+2CHIA HẾT CHO Đ=>2(3N+4) CHIA HẾT CHO DD

=>(6N+3)-(6N+4) CHIA HẾT CHO Đ

=>1 CHIA HẾT CHO Đ

=>Đ=1

=>2N+1/3N+2 LÀ P/S TỐI GIẢN

ngo thuy linh
1 tháng 4 2016 lúc 9:31

thiếu đề bài nha

sao mình giải được

Nguyễn Huy Hoàng
Xem chi tiết
giang ho dai ca
1 tháng 5 2015 lúc 17:07

 GIẢI TIẾP : Từ [1] và [2]      => 1 chia hết cho d => d = 1 

                                                     => dpcm 

   cho minh cai dung

✓ ℍɠŞ_ŦƦùM $₦G ✓
1 tháng 5 2015 lúc 16:59

gọi d là ƯCLN(2n+1;3n+2).theo bài ra ta có:

2n+1 chia hết cho d=>6n+3 chia hết cho d

3n+2 chia hết cho d=>6n+4 chia hết cho d

=>1 chia hết cho d=>d=1

=>ĐPCM

Sarah
20 tháng 7 2016 lúc 19:26

Gọi d = ƯCLN(2n + 1; 3n + 2) (d thuộc N*)

=> 2n + 1 chia hết cho d; 3n + 2 chia hết cho d

=> 3.(2n + 1) chia hết cho d; 2.(3n + 2) chia hết cho d

=> 6n + 3 chia hết cho d; 6n + 4 chia hết cho d

=> (6n + 4) - (6n + 3) chia hết cho d

=> 6n + 4 - 6n - 3 chia hết cho d

=> 1 chia hết cho d

Mà d thuộc N* => d = 1

=> ƯCLN(2n + 1; 3n + 2) = 1

Chứng tỏ phân số 2n + 1/3n + 2 tối giản

Anh Minh Ho
Xem chi tiết
Cao Thị Nhi
28 tháng 3 2016 lúc 20:40

Gọi ước chung lớn nhất của 2n + 1 và 3n + 2 là x , ta có:

3( 2n + 1 ) - 2( 3n + 2) = -1 chia hết cho x

=> x thuộc -1;1

Vậy 2n + 1 và 3n + 2 là hai số nguyên tố cùng nhau. Vậy phân số có dạng 2n+1 / 3n + 2 là phân số tối giản

TRẦN MINH NGỌC
28 tháng 3 2016 lúc 20:41

Gọi ( 2n + 1 , 3 n + 2 ) là d ( d thuộc Z )

=> 2n + 1 chia hết cho d => 3 ( 2n + 1 ) chia hết cho d => 6 n + 3 chia hết cho d

     3n + 2 chia hết cho d=> 2 ( 3n + 2 ) chia hết cho d => 6n + 4 chia hết cho d

=> (6n+4) - ( 6n + 3 ) chia hết cho d

=> 1 chia hết cho d => d thuộc Ư ( 1 ) ={ -1 ; 1 }

=> 2n + 1 / 3n + 2 là phân số tối giản ( đpcm)

Lê Trọng Hải Đăng
28 tháng 3 2016 lúc 20:49

Gọi ƯC nguyên tố của 2n+1 và 3n+2 là d

ta có :2n+1chia hết cho d

         3n+2chia hết cho d

=> 6n+3-(6n+4)chia hết cho d

=>-1chia hết cho d=> d=1

Vậy 2n+1 và 3n+2 là hai số nguyên tố cùng nhau =>2n+1/3n+2 là phân số tối giản

Vũ Thụy Liên Tâm
Xem chi tiết
Đỗ Nhật Linh
26 tháng 4 2016 lúc 9:30

Để 2n+1/3n+2 tối giản

=> (2n+1,3n+2) = 1

Gọi d là ƯCLN(2n+1,3n+2), ta có:

2n+1 chia hết cho d , 3n+2 chia hết cho d

=> 3(2n+1) chia hết cho d , 2(3n+2) chia hết cho d

=> 6n+3 chia hết cho d, 6n + 4 chia hết cho d

=> (6n+4) - (6n+3) chia hết cho d

=> 1 chia hết cho d

=> d=1

=> (2n+1,3n+2)=1

Vậy 2n+1/3n+2 là phân số tối giản.

Im Yoona
Xem chi tiết
Hồ Thu Giang
12 tháng 7 2015 lúc 15:37

Gọi ƯCLN(2n+1; 3n+2) là d. Ta có:

2n+1 chia hết cho d => 6n+3 chia hết cho d

3n+2 chia hết cho d => 6n+4 chia hết cho d

=> 6n+4-(6n+3) chia hết cho d

=> 1 chia hết cho d

=> d = 1

=> ƯCLN(2n+3; 3n+2) = 1

=>\(\frac{2n+1}{3n+2}\)là phân số tối giản (đpcm)

Sarah
20 tháng 7 2016 lúc 19:26

Gọi d = ƯCLN(2n + 1; 3n + 2) (d thuộc N*)

=> 2n + 1 chia hết cho d; 3n + 2 chia hết cho d

=> 3.(2n + 1) chia hết cho d; 2.(3n + 2) chia hết cho d

=> 6n + 3 chia hết cho d; 6n + 4 chia hết cho d

=> (6n + 4) - (6n + 3) chia hết cho d

=> 6n + 4 - 6n - 3 chia hết cho d

=> 1 chia hết cho d

Mà d thuộc N* => d = 1

=> ƯCLN(2n + 1; 3n + 2) = 1

Chứng tỏ phân số 2n + 1/3n + 2 tối giản

Lê Thị Nhung Nguyệt
Xem chi tiết
Quang
23 tháng 4 2017 lúc 9:54

Để phân số \(\frac{2n+1}{3n+2}\)tối giản, ta cần chứng minh ƯCLN(2n+1; 3n+2) = 1 hoặc -1

Giả sử ƯCLN(2n+1; 3n+2) = d (d khác 1 và -1), ta có:

\(\left(2n+1\right)⋮d\) và \(\left(3n+2\right)⋮d\)

\(\Rightarrow\left[\left(3n+2\right)-\left(2n+1\right)\right]⋮d\) hay \(\left(n+1\right)⋮d\)

Vì \(\left(2n+1\right)⋮d\) và \(\left(n+1\right)⋮d\)

\(\Rightarrow\left[\left(2n+1\right)-\left(n+1\right)\right]⋮d\) hay \(n⋮d\)

Vì  \(n⋮d\) nên \(2n⋮d\), mà \(\left(2n+1\right)⋮d\)

\(\Rightarrow1⋮d\) hay d = 1 hoặc d = -1.

Vậy phân số \(\frac{2n+1}{3n+2}\) tối giản.

Kudo Shinichi
23 tháng 4 2017 lúc 9:19

Gọi d là UCLN của 2n +1 và 3n+2

2n+1\(⋮\)d

\(3n+2⋮d\)

\(\Rightarrow3\left(2n+1\right)⋮\)d và \(2\left(3n+2\right)⋮\)d

\(\Rightarrow6n+3⋮d\);\(6n+4⋮d\)

\(\Rightarrow6n+4-\left(6n+3\right)⋮d\)

\(\Rightarrow1⋮d\Rightarrow d=1\Rightarrow dpcm\)

Nguyễn Thị Thanh Thảo
13 tháng 4 2018 lúc 9:42

Gọi d là ƯC của 2n+1 và 3n+2

( 2 n + 1 ) \(⋮\)d\(\Rightarrow\)3 × ( 2 n + 1 ) \(\Rightarrow\)( 6 n + 1 )

( 3 n + 2 ) \(⋮\)d\(\Rightarrow\)2 × ( 3 n + 2 ) \(\Rightarrow\)( 6 n + 2 )

\(\Rightarrow\)(3 n + 1 - 3 n + 2 )

= 1  

\(\Rightarrow\)d = 1 ; d = -1

Thảo Nguyên
Xem chi tiết
Muôn cảm xúc
6 tháng 5 2016 lúc 16:54

Gọi UCLN(2n + 1 ; 3n + 2) = d

2n + 1 chia hết cho d => 3(2n + 1) = 6n + 3 chia hết cho d

3n + 2 chia hết cho d => 2(3n + 2) = 6n + 4 chia hết cho d

=> [(6n + 4) - (6n + 3)] chia hết cho d

1 chia hết cho d => d = 1

Vì UCLN(2n + 1 ; 3n + 2) = 1

Nên 2n + 1/3n + 2 tối giản (với mọi n thuộc N)

Mai Linh
6 tháng 5 2016 lúc 15:21

goij d là ước chung của 2n +1 và 3n+2

2n+1chia hết cho d => 3(2n+1) chia hết cho d => 6n +3 chia hết cho d (1)

3n+2 chia hết cho d=> 2(3n +2)chia hết cho d => 6n + 4 chia hết cho d (2)

lấy (2) trừ (1) ta có 1 chia hết cho d vậy d=cộng trừ 1

nên phân số đã cho tối giản

 

 

đào thị hoàng yến
10 tháng 5 2016 lúc 15:02

Để 2n + 1 / 3n+2  là phân số tôi giản thì 2n+1 và 3n +2 phải nguyên tố cùng nhau

Gọi d là ƯCLN(2n+1,3n+2) ; d thuộc N*

Suy ra 2n+1 chia hết cho d và 3n + 2 chia hết cho d

Hay :   3.(2n+1) chia hết cho d và 2. (3n+2) chia hết cho d

=>       6n+3 chia hết cho d và 6n+4 chia hết cho d 

Suy ra [ ( 6n+4)-(6n+3 )] chia hết cho d

       => ( 6n+4 - 6n - 3 ) chia hết cho d

       =>             1            chia hết cho d 

       => d thuộc Ư(1) ={1} nên d =1

                                         Hay ƯCLN (2n+1 , 3n+2 ) =1

Vậy 2n+1 / 3n+2 là phân số tối giản