cho x>y>0. Chứng minh x3>y3
Cho x+y+z=0. Chứng minh x3+x2z-xyz+y2z+y3=0
Ta có:
\(x^3+x^2z-xyz+y^2z+y^3\)
\(=\left(x^3+y^3\right)+\left(x^2z-xyz+y^2z\right)\)
\(=\left(x+y\right)\left(x^2-xy+y^2\right)+z\left(x^2-xy+y^2\right)\)
\(=\left(x+y+z\right)\left(x^2-xy+y^2\right)\)
\(=0\cdot\left(x^2-xy+y^2\right)\)
\(=0\left(dpcm\right)\)
cho x,y,z >0;xyz=1.Chứng minh rằng x3/(y+1)(z+1)+y3/(z+1)(x+1)+x3/(y+1)(z+1)≥3/4
Cho x,y,z>=-1 và x3 +y3 +z3 =0.Chứng minh rằng x+y+z<1
Chứng minh rằng:
x3 + y3 ≥ x2y + xy2, ∀x, y ≥ 0
Với x ≥ 0; y ≥ 0 thì x + y ≥ 0
Ta có: x3 + y3 ≥ x2y + xy2
⇔ (x3 + y3) – (x2y + xy2) ≥ 0
⇔ (x + y)(x2 – xy + y2) – xy(x + y) ≥ 0
⇔ (x + y)(x2 – xy + y2 – xy) ≥ 0
⇔ (x + y)(x2 – 2xy + y2) ≥ 0
⇔ (x + y)(x – y)2 ≥ 0 (Luôn đúng vì x + y ≥ 0 ; (x – y)2 ≥ 0)
Dấu « = » xảy ra khi (x – y)2 = 0 ⇔ x = y.
cho x,y,z >0;xyz=1.Chứng minh rằng x3/2y+1+y3/2z+1+z3/2x+1
Chứng minh:
(x3+x2y+xy2+y3)(x-y)=x3-y3
(x3+x2y+xy2+y3)(x-y)
=x(x3+x2y+xy2+y3)-y(x3+x2y+xy2+y3)
=x4+x3y+x2y2+xy3-x3y-x2y2+xy3+y4
= x4+y4
đề sai bạn xem lại đề
cho x,y,z >0;xyz=1.Chứng minh rằng x3/2y+1+y3/2z+1+z3/2x+1≥1
Cho x > y > 0. Chứng minh rằng x3 > y3
*) Từ x > y > 0 ta có:
x > y ⇒ xy > y2 (1)
x > y ⇒ x2 > xy (2)
*) Từ (1) và ( 2 ) suy ra x2 > y2.
x2 > y2 ⇒ x3 > xy2 (3)
x > y ⇒ xy2 > y3 (4)
Từ (3) và (4) suy ra x3 > y3.
Chứng minh: x 3 + y 3 + z 3 - 3 x y z = 1 / 2 . x + y + z x - y 2 + y - z 2 + z - x 2
Từ đó chứng tỏ: Với ba số x, y, z không âm thì x 3 + y 3 + z 3 3 ≥ x y z
Vế trái bằng vế phải nên đẳng thức được chứng minh.
Nếu x ≥ 0, y ≥ 0, z ≥ 0 thì:
x + y + z ≥ 0
x - y 2 + y - z 2 + z - x 2 ≥ 0
Suy ra:
x 3 + y 3 + z 3 - 3 x y z ≥ 0 ⇔ x 3 + y 3 + z 3 ≥ 3 x y z
Hay: x 3 + y 3 + z 3 3 ≥ x y z
chứng minh rằng: 1x+1y≤−2 biết x3+y3+3(x2+y2)+4(x+y)+4=0 và xy>0
CMR: \(\frac{1}{x}+\frac{1}{y}\le2\) biết \(^{x^3+y^3+3\left(x^2+y^2\right)+4\left(x+y\right)+4=0}\) và xy>0