Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
nguyễn hà phi long
Xem chi tiết
Nguyễn Tiến Hùng
Xem chi tiết
Nguyễn Đức Mạnh
19 tháng 2 2016 lúc 20:53

bạn có chơi bang bang sever hư cấu ko vậy

Nguyễn Quang Thành
19 tháng 2 2016 lúc 20:55

Bài 1: tam giác ABC, BM = 1/4BC, CB = 1/3AC. Nối MN, AM. Tìm tỉ số diện tích 2 tam giác ABM và MNC

Bài 2: cho tam giác ABC có DT là 100 xăng ti mét vuông. trên AB lấy điểm M sao cho AM = MB, trên BC lấy điểm N sao cho BN = NC và trên AC lấy điểm P sao cho AP = PC. nối M với N, N với P và P với M. tính DT tam giác MNP

bài 3: cho tam giác ABC, biết độ dày đáy BC là 27m, chiều cao AH là 20cm. trên AB lấy điểm M sao cho MA = MB. trên AC lấy điểm N sao cho NC = (1/3) AC. trên BC lấy điểm P sao cho BP = PC. Tính DT tam giác MNP

bài 4: cho tam giác ABC, M là điểm chính giữa BC, nối AM, trên AM lấy điểm N sao cho AN = 2 NM. DT tam giác ABN = 25 xăng ti mét vuông. Tính DT tam giác ABC

Thế này là quá nhiều bạn ạ

Lê Đức Thai
Xem chi tiết
Lung Thị Linh
14 tháng 2 2016 lúc 17:28

240cm2 nha bạn, cần cách làm không

lua nguyen
Xem chi tiết
Phạm Bảo Nam
Xem chi tiết
Akai Haruma
26 tháng 11 2021 lúc 0:20

Lời giải:

Kẻ chiều cao $CK, BH$. Ta có:

\(\frac{S_{MNC}}{S_{ANB}}=\frac{MN\times CK}{AN\times BH}=\frac{MN}{AN}\times \frac{CK\times MN}{BH\times MN}\)

\(=\frac{1}{2}\times \frac{S_{MNC}}{S_{BMN}}=\frac{1}{2}\times \frac{MC}{BM}=\frac{1}{2}\times \frac{3}{2}=\frac{3}{4}\)

Akai Haruma
26 tháng 11 2021 lúc 0:21

Hình vẽ:

Đặng Trung Sơn
Xem chi tiết
Lê Song Phương
1 tháng 1 2022 lúc 20:01

Trước hết ta cần chứng minh bổ đề sau (tạm gọi là bổ đề 1): Nếu 2 tam giác mà có chung đường cao tương ứng ( hay 2 đường cao tương ứng bằng nhau) thì tỉ số diện tích của hai tam giác bằng tỉ số cạnh đáy tương ứng.

Hạ đường cao chung AH của hai tam giác ABM và ACM. Ta cần chứng minh \(\frac{S_{ABM}}{S_{ACM}}=\frac{BM}{CM}\)

Thật vậy: \(S_{ABM}=\frac{1}{2}AH.BM\)\(S_{ACM}=\frac{1}{2}AH.CM\)

\(\Rightarrow\frac{S_{ABM}}{S_{ACM}}=\frac{\frac{1}{2}AH.BM}{\frac{1}{2}AH.CM}=\frac{BM}{CM}\)

Như vậy bổ đề được chứng minh.

Khách vãng lai đã xóa
Lê Song Phương
1 tháng 1 2022 lúc 20:13

Một sự thật nghiệt ngã đó là muốn MN chia tam giác ABC thành 2 phần có diện tích bằng nhau thì chỉ còn nước M trùng với B mà thôi.

Muốn MN chia tam giác ABC thành 2 phần có dt bằng nhau thì điều hiển nhiên là \(\frac{S_{CMN}}{S_{ABC}}=\frac{1}{2}\)(dt tam giác CMN bằng một nửa dt tam giác ABC)

Giả sử M nằm trên cạnh BC nhưng M không trùng với B, ta sẽ có \(CM< BC\)\(\Leftrightarrow\frac{CM}{BC}< 1\)

Hai tam giác CMN và BCN có chung đường cao hạ từ N nên \(\frac{S_{CMN}}{S_{BCN}}=\frac{CM}{BC}\)(hai tam giác có chung đường cao thì tỉ số diện tích bằng tỉ số hai cạnh đáy tương ứng)

Từ đó ta có \(\frac{S_{CMN}}{S_{BCN}}< 1\)(1)

Mặt khác hai tam giác BCN và ABC có chung đường cao hạ từ B nên \(\frac{S_{BCN}}{S_{ABC}}=\frac{NC}{AC}\)

Do N nằm trên AC sao cho \(NA=NC\)nên \(\frac{NC}{AC}=\frac{1}{2}\)(NC bằng một nửa AC)

Từ đó \(\frac{S_{BCN}}{S_{ABC}}=\frac{1}{2}\)(2)

Nhân vế theo vế của (1) và (2), ta có: \(\frac{S_{CMN}}{S_{BCN}}.\frac{S_{BCN}}{S_{ABC}}< 1.\frac{1}{2}\)\(\Leftrightarrow\frac{S_{CMN}}{S_{ABC}}< \frac{1}{2}\)

Như vậy rõ ràng khi N không trùng với B thì việc MN chia tam giác ABC thành 2 phần có dt bằng nhau là không thể.

Do đó N trùng với B.

Khách vãng lai đã xóa
Phi Hành Gia ( ^ _ ^ )
Xem chi tiết
jiyeon
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
22 tháng 11 2018 lúc 11:21

Giải bài 7 trang 17 sgk Hình học 10 | Để học tốt Toán 10

Gọi D là trung điểm AB.

Khi đó với mọi điểm M ta có :

Giải bài 7 trang 17 sgk Hình học 10 | Để học tốt Toán 10

⇔ M là trung điểm của trung tuyến từ đỉnh C.

Thanh Trần
Xem chi tiết
Nguyễn Việt Lâm
23 tháng 12 2022 lúc 0:41

38.

Gọi I là trung điểm AB và G là trọng tâm tam giác ABC

\(\Rightarrow\left\{{}\begin{matrix}\overrightarrow{MA}+\overrightarrow{MB}=2\overrightarrow{MI}\\\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}=\overrightarrow{0}\end{matrix}\right.\)

\(3\left|\overrightarrow{MA}+\overrightarrow{MB}\right|=2\left|\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}\right|\)

\(\Leftrightarrow3.\left|2\overrightarrow{MI}\right|=3\left|\overrightarrow{MG}+\overrightarrow{GA}+\overrightarrow{MG}+\overrightarrow{GB}+\overrightarrow{MG}+\overrightarrow{GC}\right|\)

\(\Leftrightarrow6\left|\overrightarrow{MI}\right|=2.\left|3\overrightarrow{MG}\right|\)

\(\Leftrightarrow6\left|\overrightarrow{MI}\right|=6\left|\overrightarrow{MG}\right|\)

\(\Leftrightarrow\left|\overrightarrow{MI}\right|=\left|\overrightarrow{MG}\right|\)

\(\Leftrightarrow MI=MG\)

\(\Rightarrow\) Tập hợp M là đường trung trực của đoạn thẳng IG