CMR: p4 - q4 chia hết cho 240 nếu p và q là các số nguyên tố lớn hơn 5.
Với q, p là số nguyên tố lớn hơn 5 chứng minh rằng: p4 – q4 chia hết cho 240
https://olm.vn/hoi-dap/detail/4762440095.html
Với q, p là số nguyên tố lớn hơn 5 chứng minh rằng: p4 – q4 chia hết cho 240
Ta có: p4 – q4 = (p4 – 1 ) – (q4 – 1) ; 240 = 8 .2.3.5
Chứng minh p4 – 1 240
- Do p >5 nên p là số lẻ
+ Mặt khác: p4 –1 = (p –1) (p + 1) (p2 +1)
--> (p-1 và (p+1) là hai số chẵn liên tiếp => (p – 1) (p+1) 8
+ Do p là số lẻ nên p2 là số lẻ -> p2 +1 2
- p > 5 nên p có dạng:
+ p = 3k +1 --> p – 1 = 3k + 1 – 1 = 3k 3 --> p4 – 1 3
+ p = 3k + 2 --> p + 1 = 3k + 2 + 1 = 3k +3 3 --> p4 – 1 3
- Mặt khác, p có thể là dạng:
+ P = 5k +1 --> p – 1 = 5k + 1 – 1 = 5k 5 --> p4 – 1 5
+ p = 5 k+ 2 --> p2 + 1 = (5k +2)2 +1 = 25k2 + 20k +5 5 --> p4 – 1 5
+ p = 5k +3 --> p2 +1 = 25k2 + 30k +10 --> p4 –1 5
+ p = 5k +4 --> p + 1 = 5k +5 5 --> p4 – 1 5
Vậy p4 – 1 8 . 2. 3 . 5 hay p4 – 1 240
Tương tự ta cũng có q4 – 1 240
Vậy: (p4 – 1) – (q4 –1) = p4 – q4 240
chúc bạn học tốt :)
CMR: p4 - q4 chia hết cho 240 nếu p và q là các số nguyên tố lớn hơn 5.
Giúp mk nhak...Mk sắp thi rồi...Ai trả lời đúng mk tick cho !!!
1. (Dạng số nguyên tố,hợp số)
a.Tìm số nguyên tố p để : p+10 và p+14 đều là các số nguyên tố
b.Với p,q là các số nguyên tố bé hơn 5,chứng minh rằng :
p4 và q4 chia hết cho 240.
c.Cho p và p+4 là các số nguyên tố (p lớn hơn 3).Chứng minh p + 8 là hợp số.
HELP ME !!!
Đoạn p,q là p mũ 4 và q mũ 4 nha
em mớ lớp 5 nên không biết
a)Xét p=2
=>p+10 = 12 (loại0
p=3 =>p+10 và p+14 đều là số nguyên tố.nếu p>3 =>p=3k+1 , p=3k+2
TH1:p = 3k+1 =>p+14=3k+1+14=3k+15(loại)
TH2:p=3k+2=>p+10=3k+2+10=3k+12(loại)
=>p=3
Với q,p là số nguyên tố lớn hơn 5 chứng mjnh rằng p4-q4 chia hết cho 240
Số nguyên tố lớn hơn 5 có dạng 3k + 1 hoặc 3 k + 2.
Thay từng trường hợp vào thì chứng minh được.
**** thì anh kết bạn với chú !
a) Cho a là số nguyên tố lớn hơn 6. CMR: \(a^2-1\)chia hết cho 24
b) CMR: nếu a và b là các số nguyên tố lớn hơn 3 thì \(a^2-b^2\)chia hết cho 24
c) Tìm điều kiện của số tự nhiên a để \(a^4-1\)chia hết cho 240
với p,q là số nguyên tố lớn hơn 5 CMR p4xq4 chia hết cho 240
Với q,p là số nguyên tố lớn hơn 5 chứng minh rằng: p4-q4 ⋮ 24
Vì p là số nguyên tố và lớn hơn 5 nên p lẻ
Khi đó :
\(p^4-q^4=\left(p^2-q^2\right)\left(p^2+q^2\right)=\left(p-q\right)\left(p+q\right)\left(p^2+q^2\right)\)
Dễ thấy, \(p-q;p+q;p^2+q^2\) chia hết cho 2 và có một số chia hết cho 4.
Nên \(p^4-q^4⋮16\left(1\right)\)
Lại có \(p^4-q^4\)
\(=\left(p^4-1\right)-\left(q^4-1\right)\\ =\left(p-1\right)\left(p+1\right)\left(p^2+1\right)-\left(q-1\right)\left(q+1\right)\left(q^2+1\right)\)
Vì p nguyên tố và lớn hơn 5 nên \(p⋮̸3\)
Mà \(\left(p-1\right)p\left(p+1\right)⋮3\)
\(\Rightarrow\left(p-1\right)\left(p+1\right)⋮3\)
Lại có : \(\left(p-1\right)\left(p+1\right)\left(p^2+1\right)=\left(p-1\right)\left(p+1\right)\left(p^2-4+5\right)\)
\(=\left(p-2\right)\left(p-1\right)\left(p+1\right)\left(p+2\right)+5\left(p-1\right)\left(p+1\right)⋮5\)
Nên \(p^4-1⋮15\)
Tương tự \(q^4-1⋮15\)
Nên \(p^4-q^4⋮15\left(2\right)\)
\(\left(1\right)\left(2\right)\Rightarrow p^4-q^4⋮240\)
Với p,q là số nguyên tố lớn hơn 5. CMR: p4 - q4 chia hết cho 240.
ta có
p^4-q^4=(p^4-1)+(q^4-1)
xét hiệu:p^4-1=(p^2)^2-1^4
=(p^2-1)(p^2+1)=(p+1)(p-1)(p^2+1) (*)
Ta thấy p+1 và p-1 là hai số chãn liên tiếp=>(p+1)(p-1)chia hết cho 8.Đặt (p+1)(p-1)=8n
Mặt khác p^2+1 là số chẵn.Dặt p^2+1=2k
thay vào (*) ta có p^4-1=2k8n=16knchia hết cho 16 (1)
mặt khác vì p là số nguyên tố lớn hơn 5=>p^4 chia cho 3 dư 1=>p^4-1 chia hết cho 3 (2)
mặt khascvif p là số nguyên tố lớn hơn 5 nên khi p chia cho 5 sẽ nhận được các số dư là 1,2,3,4
Với p=5m+1=>p-1 chia hết cho 5
Với p=5m+2=>p^4 chia cho 5 dư 1=>p^4-1 chia hết cho 5
Với p=5m+3=>p^4 chia cho 5 dư 1=>p^4-1 chia hết cho 5
Với p=5m+4=>p^4chia cho 5 dư 1=>p^4-1 chia hết cho 5
Tóm lại qua mỗi trường hợp thì p^4-1 đều chia hết cho 5 (3)
Từ (1),(2)và(3)=>p^4-1 chia hết cho 16.3.5=240
chứng minh tương tự với q^4-1=>q^4-1 chia hết cho 240
=>p^4-q^4 chia hết cho 240
Mình chẳng gì ngoài T/H2:p^4-q^4=(p^4+1)-(q^4+1)
Còn cách chứng minh như trên
Mình chưa chắc đâu,lỡ sai đừng trách mình!
Buồn!hu...hu..!
MGUOI NAO GIAI MA CHA HIEU GI CA HU DO NGU