Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Sách Giáo Khoa
Xem chi tiết
Trương Văn Châu
Xem chi tiết
Nguyễn Hòa Bình
1 tháng 4 2016 lúc 14:53

Đặt \(u=x^2\rightarrow du=2xdx,dv=\cos xdx\rightarrow v=\sin x\)

Do đó : 

\(I=x^2.\sin x|^{\frac{\pi}{2}}_0-\int\limits^{\frac{\pi}{2}}_02x.\sin xdx=\frac{\pi^2}{4}+\int\limits^{\frac{\pi}{2}}_0x.d\left(\cos x\right)=\frac{\pi^2}{4}+\left(x.\cos x|^{\frac{\pi}{2}}_0-\int\limits^{\frac{\pi}{2}}_0\cos x\right)\)

\(=\frac{\pi^2}{4}+\left(0-\sin|^{\frac{\pi}{2}}_0\right)=\frac{\pi^2-4}{4}\)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Phạm Đức Thắng
Xem chi tiết
Nguyễn Kim Khánh Hà
7 tháng 4 2016 lúc 11:09

\(I=\int\limits^{\pi}_0\left(x^2-x\sin x\right)dx=\frac{x^3}{3}|^{\pi}_0-\int^{\pi}_0x\sin xdx=\frac{\pi^3}{3}-\int\limits^{\pi}_0x\sin xdx\)

Tính \(I_1=\int\limits^{\pi}_0x\sin xdx\)

Đặt \(\begin{cases}u=x\\dv=\sin xdx\end{cases}\)\(\Rightarrow\begin{cases}du=dx\\v=-\cos x\end{cases}\)

\(\Rightarrow I_1=-x\cos x|^{\pi}_0+\int\limits^{\pi}_0\cos xdx=\pi+\sin x|^{\pi}_0=\pi\)

\(\Rightarrow I=\frac{\pi^3}{3}-\pi\)

Sách Giáo Khoa
Xem chi tiết
Hai Binh
27 tháng 4 2017 lúc 18:06

Hỏi đáp Toán

Lương Ngọc Thuyết
Xem chi tiết
Guyo
4 tháng 4 2016 lúc 9:39

\(I=\int\limits^{\frac{\pi}{2}}_0\left(2x-1\right)\cos^2xdx=\int\limits^{\frac{\pi}{2}}_0\left(2x-1\right)\left(\frac{1+\cos2x}{2}\right)dx=\int\limits^{\frac{\pi}{2}}_0\left(x-\frac{1}{2}\right)dx+\frac{1}{2}\int\limits^{\frac{\pi}{2}}_0\left(2x-1\right)\cos2xdx\)

 \(=\left(\frac{1}{2}x^2-\frac{1}{2}x\right)|^{\frac{\pi}{2}}_0+\frac{1}{2}\int\limits^{\frac{\pi}{2}}_0\left(2x-1\right)d\left(\sin2x\right)=\frac{\pi^2}{8}-\frac{\pi}{4}+\frac{1}{2}\left[\left(2x-1\right)\sin2x|^{\frac{\pi}{2}}_0-\int\limits^{^{\frac{\pi}{2}}_0}_0\sin2x.2dx\right]\)

 \(=\frac{\pi^2}{8}-\frac{\pi}{4}+\left(0+\cos2x|^{\frac{\pi}{2}}_0\right)=\frac{\pi^2}{8}-\frac{\pi}{4}-1\)

Sách Giáo Khoa
Xem chi tiết
Akai Haruma
8 tháng 7 2017 lúc 16:48

a)

Ta có \(A=\int ^{\frac{\pi}{4}}_{0}\cos 2x\cos^2xdx=\frac{1}{4}\int ^{\frac{\pi}{4}}_{0}\cos 2x(\cos 2x+1)d(2x)\)

\(\Leftrightarrow A=\frac{1}{4}\int ^{\frac{\pi}{2}}_{0}\cos x(\cos x+1)dx=\frac{1}{4}\int ^{\frac{\pi}{2}}_{0}\cos xdx+\frac{1}{8}\int ^{\frac{\pi}{2}}_{0}(\cos 2x+1)dx\)

\(\Leftrightarrow A=\frac{1}{4}\left.\begin{matrix} \frac{\pi}{2}\\ 0\end{matrix}\right|\sin x+\frac{1}{16}\left.\begin{matrix} \frac{\pi}{2}\\ 0\end{matrix}\right|\sin 2x+\frac{1}{8}\left.\begin{matrix} \frac{\pi}{2}\\ 0\end{matrix}\right|x=\frac{1}{4}+\frac{\pi}{16}\)

b)

\(B=\int ^{1}_{\frac{1}{2}}\frac{e^x}{e^{2x}-1}dx=\frac{1}{2}\int ^{1}_{\frac{1}{2}}\left ( \frac{1}{e^x-1}-\frac{1}{e^x+1} \right )d(e^x)\)

\(\Leftrightarrow B=\frac{1}{2}\left.\begin{matrix} 1\\ \frac{1}{2}\end{matrix}\right|\left | \frac{e^x-1}{e^x+1} \right |\approx 0.317\)

Akai Haruma
8 tháng 7 2017 lúc 18:22

c)

\(C=\int ^{1}_{0}\frac{(x+2)\ln(x+1)}{(x+1)^2}d(x+1)\).

Đặt \(x+1=t\)

\(\Rightarrow C=\int ^{2}_{1}\frac{(t+1)\ln t}{t^2}dt=\int ^{2}_{1}\frac{\ln t}{t}dt+\int ^{2}_{1}\frac{\ln t}{t^2}dt\)

\(=\int ^{2}_{1}\ln td(\ln t)+\int ^{2}_{1}\frac{\ln t}{t^2}dt=\frac{\ln ^22}{2}+\int ^{2}_{1}\frac{\ln t}{t^2}dt\)

Đặt \(\left\{\begin{matrix} u=\ln t\\ dv=\frac{dt}{t^2}\end{matrix}\right.\Rightarrow \left\{\begin{matrix} du=\frac{dt}{t}\\ v=\frac{-1}{t}\end{matrix}\right.\Rightarrow \int ^{2}_{1}\frac{\ln t}{t^2}dt=\left.\begin{matrix} 2\\ 1\end{matrix}\right|-\frac{\ln t+1}{t}=\frac{1}{2}-\frac{\ln 2 }{2}\)

\(\Rightarrow C=\frac{1}{2}-\frac{\ln 2}{2}+\frac{\ln ^22}{2}\)

Akai Haruma
8 tháng 7 2017 lúc 21:05

d)

\(D=\int ^{\frac{\pi}{4}}_{0}\frac{x\sin x+(x+1)\cos x}{x\sin x+\cos x}dx=\int ^{\frac{\pi}{4}}_{0}dx+\int ^{\frac{\pi}{4}}_{0}\frac{x\cos x}{x\sin x+\cos x}dx\)

Ta có:

\(\int ^{\frac{\pi}{4}}_{0}dx=\left.\begin{matrix} \frac{\pi}{4}\\ 0\end{matrix}\right|x=\frac{\pi}{4}\)

\(\int ^{\frac{\pi}{4}}_{0}\frac{x\cos xdx}{x\sin x+\cos x}=\int ^{\frac{\pi}{4}}_{0}\frac{d(x\sin x+\cos x)}{x\sin x+\cos x}=\left.\begin{matrix} \frac{\pi}{4}\\ 0\end{matrix}\right|\ln |x\sin x+\cos x|\)

\(=\ln|\frac{\pi\sqrt{2}}{8}+\frac{\sqrt{2}}{2}|\)

Suy ra \(D=\frac{\pi}{4}+\ln|\frac{\pi\sqrt{2}}{8}+\frac{\sqrt{2}}{2}|\)

Nguyễn Hà Minh Thanh
Xem chi tiết
Nguyễn Thị Hà Uyên
11 tháng 4 2016 lúc 20:26

\(I=\int\limits^{\frac{\pi}{2}}_0\frac{\sin x}{\cos2x+3\cos x+2}dx=\int\limits^{\frac{\pi}{2}}_0\frac{\sin x}{2\cos^2x+3\cos x+1}dx\)

Đặt \(\cos x=t\Rightarrow dt=-\sin dx\)

Với \(x=0\Rightarrow t=1\)

Với \(x=\frac{\pi}{2}\Rightarrow t=0\)

\(I=\int\limits^1_0\frac{dt}{2t^2+3t+1}=\int\limits^1_0\frac{dt}{\left(2t+1\right)\left(t+1\right)}=2\int\limits^1_0\left(\frac{1}{2t+1}+\frac{1}{2t+1}\right)dt\)

  \(=\left(\ln\frac{2t+1}{2t+1}\right)|^1_0=\ln\frac{3}{2}\)

Sách Giáo Khoa
Xem chi tiết
Phan Thùy Linh
1 tháng 4 2017 lúc 23:49

Ôn tập cuối năm giải tích lớp 12

CÔNG CHÚA THẤT LẠC
9 tháng 4 2017 lúc 10:26

Giải bài 11 trang 147 sgk Giải tích 12 | Để học tốt Toán 12

Phạm Lợi
Xem chi tiết
Hoàng Tử Hà
20 tháng 3 2021 lúc 23:16

Cách này hơi dài chút, nhưng nếu nghĩ ra cách hay hơn mình sẽ đề xuất nhe!

\(=\int\sin^5x.\left(2\sin x\cos x\right)^3.2xdx=16\int x.\sin^8x\cos^3xdx\)

\(\left\{{}\begin{matrix}u=x\\dv=\sin^8x.\cos^3xdx\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}du=dx\\v=\int\sin^8x.\cos^3xdx\end{matrix}\right.\)

\(I_1=\int\sin^8x\cos^3xdx=\int\sin^8x.\cos^2x.\cos xdx=\int\sin^8x.\left(1-\sin^2x\right)\cos xdx\)

\(t=\sin x\Rightarrow dt=\cos xdx\Rightarrow\int\sin^8x\left(1-\sin^2x\right)\cos xdx=\int(t^8-t^{10})dt=\dfrac{1}{9}t^9-\dfrac{1}{11}t^{11}=\dfrac{1}{9}\sin^9x-\dfrac{1}{11}\sin^{11}x\)

\(\Rightarrow\left\{{}\begin{matrix}du=dx\\v=\dfrac{1}{9}\sin^9x-\dfrac{1}{11}\sin^{11}x\end{matrix}\right.\)

\(\Rightarrow\dfrac{I}{16}=x.\left(\dfrac{1}{9}\sin^9x-11\sin^{11}x\right)-\int\left(\dfrac{1}{9}\sin^9x-\dfrac{1}{11}\sin^{11}x\right)dx\)

\(I_2=\int\left(\dfrac{1}{9}\sin^9x-\dfrac{1}{11}\sin^{11}x\right)dx=\dfrac{1}{9}\int\sin^9xdx-\dfrac{1}{11}\int\sin^{11}xdx\)

À thế này là xong rồi còn gì :) Bạn tự làm nốt nhé