chứng minh
20142015+20162015chia hết cho 2015
Trong các phân số 2014/2015; 2015/2014; 20142015/2015/2014, phân số nào nhân với 2013/2014 cho kết quả lớn hơn2013/2014?
phân số 2015/2014 phải ko, bn k cho mk nhé , mk trả lời câu hỏi của bạn rồi đấy
Cho \(M=\frac{X\left(yz-x^2\right)+y\left(zx-y^2\right)+z\left(xy-z^2\right)}{\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2}\)
Tính giá trị của M tại \(x=2014^{2015}-20142015;y=20142015-2015^{2014};z=2015^{2014}-2014^{2015}\)
Cho \(M=\frac{x\left(yz-x^2\right)+y\left(zx-y^2\right)+z\left(xy-z^2\right)}{\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2}\)
Tính giá trị của M tại \(x=2014^{2015}-20142015;y=20142015-2015^{2014};z=2015^{2014}-2014^{2015}\)
Ta có:
\(M=\frac{x\left(yz-x^2\right)+y\left(zx-y^2\right)+z\left(xy-z^2\right)}{\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2}=\frac{xyz-x^3+xyz-y^3+xyz-z^3}{\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2}=\frac{3xyz-x^3-y^3-z^3}{\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2}\)
\(-M=\frac{x^3+y^3+z^3-3xyz}{\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2}\)
Xét đẳng thức phụ:
\(a^3+b^3+c^3-3abc=\left(a+b\right)^3-3ab\left(a+b\right)+c^3-3abc=\left[\left(a +b\right)^3+c^3\right]-3ab\left(a+b+c\right)\)\(=\left(a+b+c\right)\left(\left(a+b\right)^2-c\left(a+b\right)+c^2\right)-ab\left(a+b+c\right)\)
\(=\left(a+b+c\right)\left[\left(a+b\right)^2-c\left(a+b\right)+c^2-ab\right]=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)\)
\(=\frac{1}{2}\left(a+b+c\right)\left(2a^2+2b^2+2c^2-2ab-abc-ac\right)\)
\(=\frac{1}{2}\left(a+b+c\right)\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right]\)
Thay vào -M ta có:
\(-M=\frac{\frac{1}{2}\left(x+y+z\right)\left[\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\right]}{\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2}=\frac{1}{2}\left(x+y+z\right)\Rightarrow M=-\frac{1}{2}\left(x+y+z\right)\)
Giờ thay: \(x=2014^{2015}-20142015;y=20142015-2015^{2014};z=2015^{2014}-2014^{2015}\)
Ta có:
\(M=-\frac{1}{2}\left(2014^{2015}-20142015+20142015-2015^{2014}+2015^{2014}-2014^{2015}\right)=0\)
Chứng minh 17^17 -1 chia hết cho 16
Chứng minh 2015^2015-1 chia hết cho 2014
A=(2016^2015-1)*(2016^2015+1)
Chứng minh A chia hết cho 4
Chứng minh A chia hết cho 12
A=(2015^2016-1)(2015^2016+1)
a Chứng minh A chia hết cho 4b Chứng minh A chia hết cho 12Cho biểu thức A=(2015^2016 - 1).(2015^2016 +1 )
1.Chứng minh rằng A chia hết cho 4
2.Chứng minh rằng A chia hết cho 12
so sánh 2014/2015 và 20142015/20152015
viết cả cách làm
Ta có:
2014/2015=20142014/20152015
Vì 20142014<20142015 nên 20142014/20152015<20142015/20152015
=> Nó <
20142014/20152015=2014.10001/2015.10001
=2014/2015
chứng minh 2015^2015+3.2011^2011+2018^2015 chia hết cho 10
chứng minh 2015^2017+2017^2015 chia hết cho 2016
giúp minh với !!!!!!!!!!!!!!
Ta có:
20152017 + 20172015
= 20152017 + 1 + 20172015 - 1
= (20152017 + 12017) + (20172015 - 12015)
Do 20152017 + 12017 luôn chia hết cho 2015 + 1 = 2016; 20172015 - 12015 luôn chia hết cho 2017 - 1 = 2016
=> (20152017 + 12017) + (20172015 - 12015) chia hết cho 2016
=> 20152017 + 20172015 chia hết cho 2016 (đpcm)