Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Sách Giáo Khoa
Xem chi tiết
Hai Binh
27 tháng 4 2017 lúc 18:06

Hỏi đáp Toán

Sách Giáo Khoa
Xem chi tiết
kiếp đỏ đen
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Trần Thị Hằng
Xem chi tiết
Trần Thị Hằng
29 tháng 11 2019 lúc 19:03
https://i.imgur.com/Pe6vPSJ.jpg
Khách vãng lai đã xóa
Phương Anh
Xem chi tiết
Tô Cường
Xem chi tiết
Trần Thị Bảo Ngọc
Xem chi tiết
Nguyễn Việt Lâm
29 tháng 3 2019 lúc 17:10

1/ \(\int\limits^e_1\left(x+\frac{1}{x}+\frac{1}{x^2}\right)dx=\left(\frac{x^2}{2}+lnx-\frac{1}{x}\right)|^e_1=\frac{e^2}{2}-\frac{1}{e}+\frac{3}{2}\)

2/ \(\int\limits^2_1\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)dx=\int\limits^2_1\left(x\sqrt{x}+1\right)dx=\int\limits^2_1\left(x^{\frac{3}{2}}+1\right)dx\)

\(=\left(\frac{2}{5}.x^{\frac{5}{2}}+x\right)|^2_1=\frac{8\sqrt{2}-7}{5}\)

3/

\(\int\limits^2_1\frac{2x^3-4x+5}{x}dx=\int\limits^2_1\left(2x^2-4+\frac{5}{x}\right)dx=\left(\frac{2}{3}x^3-4x+5lnx\right)|^2_1=\frac{2}{3}+5ln2\)

4/ \(\int\limits^2_1x^2\left(3x-1\right)\frac{2}{x}dx=\int\limits^2_1\left(6x^2-2x\right)dx=\left(2x^3-x^2\right)|^2_1=11\)

Hoàng Nhung
Xem chi tiết
Akai Haruma
6 tháng 3 2017 lúc 21:56

Câu 1)

Ta có \(I=\int ^{1}_{0}\frac{dx}{\sqrt{3+2x-x^2}}=\int ^{1}_{0}\frac{dx}{4-(x-1)^2}\).

Đặt \(x-1=2\cos t\Rightarrow \sqrt{4-(x-1)^2}=\sqrt{4-4\cos^2t}=2|\sin t|\)

Khi đó:

\(I=\int ^{\frac{2\pi}{3}}_{\frac{\pi}{2}}\frac{d(2\cos t+1)}{2\sin t}=\int ^{\frac{2\pi}{3}}_{\frac{\pi}{2}}\frac{2\sin tdt}{2\sin t}=\int ^{\frac{2\pi}{3}}_{\frac{\pi}{2}}dt=\left.\begin{matrix} \frac{2\pi}{3}\\ \frac{\pi}{2}\end{matrix}\right|t=\frac{\pi}{6}\)

Câu 3)

\(K=\int ^{3}_{2}\ln (x^3-3x+2)dx=\int ^{3}_{2}\ln [(x+2)(x-1)^2]dx\)

\(=\int ^{3}_{2}\ln (x+2)d(x+2)+2\int ^{3}_{2}\ln (x-1)d(x-1)\)

Xét \(\int \ln tdt\): Đặt \(\left\{\begin{matrix} u=\ln t\\ dv=dt\end{matrix}\right.\Rightarrow \left\{\begin{matrix} du=\frac{dt}{t}\\ v=t\end{matrix}\right.\Rightarrow \int \ln t dt=t\ln t-t\)

\(\Rightarrow K=\left.\begin{matrix} 3\\ 2\end{matrix}\right|(x+2)[\ln (x+2)-1]+2\left.\begin{matrix} 3\\ 2\end{matrix}\right|(x-1)[\ln (x-1)-1]\)

\(=5\ln 5-4\ln 4-1+4\ln 2-2=5\ln 5-4\ln 2-3\)

Akai Haruma
6 tháng 3 2017 lúc 22:05

Bài 2)

\(J=\int ^{1}_{0}x\ln (2x+1)dx\). Đặt \(\left\{\begin{matrix} u=\ln (2x+1)\\ dv=xdx\end{matrix}\right.\Rightarrow \left\{\begin{matrix} du=\frac{2dx}{2x+1}\\ v=\frac{x^2}{2}\end{matrix}\right.\)

Khi đó:

\(J=\left.\begin{matrix} 1\\ 0\end{matrix}\right|\frac{x^2\ln (2x+1)}{2}-\int ^{1}_{0}\frac{x^2}{2x+1}dx\)\(=\frac{\ln 3}{2}-\frac{1}{4}\int ^{1}_{0}(2x-1+\frac{1}{2x+1})dx\)

\(=\frac{\ln 3}{2}-\left.\begin{matrix} 1\\ 0\end{matrix}\right|\frac{x^2-x}{4}-\frac{1}{8}\int ^{1}_{0}\frac{d(2x+1)}{2x+1}=\frac{\ln 3}{2}-\left.\begin{matrix} 1\\ 0\end{matrix}\right|\frac{\ln (2x+1)}{8}\)

\(=\frac{\ln 3}{2}-\frac{\ln 3}{8}=\frac{3\ln 3}{8}\)

Akai Haruma
6 tháng 3 2017 lúc 22:36

Câu 5)

\(J=\underbrace{\int ^{3}_{1}\frac{3dx}{(x+1)^2}}_{A}+\underbrace{\int ^{3}_{1}\frac{\ln xdx}{(x+1)^2}}_{B}\)

Ta có: \(A=\int ^{3}_{1}\frac{3d(x+1)}{(x+1)^2}=\left.\begin{matrix} 3\\ 1\end{matrix}\right|\frac{-3}{x+1}=\frac{3}{4}\)

\(B=\int ^{3}_{1}\frac{\ln xdx}{(x+1)^2}=\left.\begin{matrix} 3\\ 1\end{matrix}\right|\frac{-\ln x}{x+1}+\int ^{3}_{1}\frac{dx}{x(x+1)}=\frac{-\ln 3}{4}+\left.\begin{matrix} 3\\ 1\end{matrix}\right|(\ln |x|-\ln|x+1|)\)

\(B=\frac{-\ln 3}{4}+(\ln 3-\ln 4)+\ln 2=\frac{3}{4}\ln 3-\ln 2\)