Tính tổng : A = 1 + 2 + 3 + ... + ( n - 1 ) + n
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
a, tính tổng:1+2+3+...+n ,1+3+5+...+(2n-1)
b, tính tổng: 1.2+2.3+3.4+...+n.(n+1)
1.2.3+2.3.4+3.4.5+...+n(n+1).(n+2)
a; A =1 + 2 +3+ 4+ 5+ ... +n
Xét dãy số 1; 2; 3; 4;5;...;n
Dãy số trên là dãy số cách đều với khoảng cách là: 2 - 1 = 1
Số số hạng của dãy số trên là: (n - 1) : 1 + 1 = n (số số hạng)
Tổng của dãy số trên là: (n + 1).n x 2
A = (n + 1).n:2
B = 1 + 3 + 5+ 7+ ...+ (2n - 1)
Dãy số trên là dãy số cách đều với khoảng cách là:
3 - 1 = 2
Số số hạng của dãy số trên là: (2n - 1 - 1) : 2 + 1 = n
Tổng của dãy số trên là: (2n - 1 + 1) x n : 2 = n2
Vậy B = n2
c; C = 1.2 + 2.3 + 3.4 + ...+ n.(n + 1)
C = \(\dfrac{1}{3}\).(1.2.3 + 2.3.3 + 3.4.3 + ... + n.(n+1).3)
C = \(\dfrac{1}{3}\)[1.2.3 + 2.3.(4 -1) + 3.4.(5- 2)+...+n.(n + 1).[(n+2) - (n-1)]
C = \(\dfrac{1}{3}\).[1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+...+n.(n +1)(n+2)-(n-1).n.(n+1)]
C = \(\dfrac{1}{3}\).n.(n+1).(n+2)
1. Viết chương trình tính tích N=1*2*3*...*n (với n được nhập từ bàn phím)
2. Viết chương trình tính tổng A=1/1*3+1/2*4+1/3*5+...+1/n*(n+2)
3. Viết chương trình tính tổng số lẻ có trong dãy từ 0->n (n được nhập từ bàn phím)
4. Viết chương trình in ra màn hình các số chẵn có trong dãy từ 0->n (n được nhập từ bàn phím) và đếm có bao nhiêu số.
5. Viết chương trình in ra màn hình các số lẻ có trong dãy số từ 0->n (n được nhập từ bàn phím) và đếm có bao nhiêu số.
6. Viết chương trình nhập số nguyên n. Tìm và đưa ra màn hình các ước của n.
7. Viết chương trình in ra màn hình các bội của n ( n được nhập từ bàn phím)
8. Viết chương trình tính tổng S=1/1+1/2+1/3+...+1/n (n được nhập từ bàn phím)
Câu 6:
uses crt;
var n,i:integer;
begin
clrscr;
readln(n);
for i:=1 to n do
if n mod i=0 then write(i:4);
readln;
end.
5:
uses crt;
var n,i,dem:integer;
begin
clrscr;
readln(n);
dem:=0;
for i:=0 to n do
if i mod 2=1 then
begin
write(i:4);
dem:=dem+1;
end;
writeln;
writeln(dem);
readln;
end.
giúp mình nha,thanks
Bài 1 : Tính tổng
1+2+3+4+....+n
Bài 2 : Tính A = 1.2+2.3+3.4+....+(n-1).n
Bài 3 Tính A = 1.3+2.4+3.5+.....+(n-1).(n+1)
câu 1
Câu hỏi của Ngọc Hà - Toán lớp 6 - Học toán với OnlineMath
a) Tính tổng : 1+ 2 + 3 +…. + n , 1+ 3 + 5 +…. + (2n -1)
b) Tính tổng : 1.2 + 2.3 + 3.4 + …..+ n.(n+1) 1.2.3+ 2.3.4 + 3.4.5 + ….+ n(n+1)(n+2)
Với n là số tự nhiên khác 0.
Các thánh giúp em zới ko hỉu gì hết trơn T-T
a)
*\(1+2+3+...+\left(n-1\right)+n\)
Số số hạng là:
\(\left(n-1\right):1+1=n-1+1=n\)(số hạng)
Tổng của dãy số là:
\(\left(n+1\right)\cdot\dfrac{n}{2}=\dfrac{n\left(n+1\right)}{2}\)
*\(1+3+5+...+\left(2n-1\right)\)
Số số hạng của dãy số là:
\(\left(2n-1-1\right):2+1=\dfrac{\left(2n-2\right)}{2}+1=n-1+1=n\)(số hạng)
Tổng của dãy số là:
\(\left(2n-1+1\right)\cdot\dfrac{n}{2}=\dfrac{2n^2}{2}=2n\)
Tính các tổng:
a) A=1/(1*2)+1/(2*3)+...+1/[n*(n+1)]
b) B=1/(1*2*3)+1/(2*3*4)+...+1/[n(n+1)(n+2)]
a) \(A=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{n\left(n+1\right)}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{n}-\frac{1}{n+1}=1-\frac{1}{n+1}\)
b) \(B=\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{n\left(n+1\right)\left(n+2\right)}=\frac{1}{2}\left(\frac{2}{1.2.3}+\frac{2}{2.3.4}+...+\frac{2}{n\left(n+1\right)\left(n+2\right)}\right)\)
\(=\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{n\left(n+1\right)}-\frac{1}{\left(n+1\right)\left(n+2\right)}\right)=\frac{1}{2}\left(\frac{1}{2}-\frac{1}{\left(n+1\right)\left(n+2\right)}\right)\)
\(=\frac{1}{4}-\frac{1}{2\left(n+1\right)\left(n+2\right)}\)
tính tổng dãy số:
a, A= 1 . 2 + 2 .3 + 3 . 4 + ... + n . (n+1)
b, B= 1 . 2 . 3 + 2 . 3 . 4 + 3 . 4 . 5 + ... + n . (n+1) . (n+2)
a) 3A=1.2.3 + 2.3.3 + 3.4.3 +... + n.(n+1).3
=1.2.(3-0) + 2.3.(4-1) + ... + n.(n+1).[(n+2)-(n-1)]
=[1.2.3+ 2.3.4 + ...+ (n-1).n.(n+1)+ n.(n+1)(n+2)] - [0.1.2+ 1.2.3 +...+(n-1).n.(n+1)]
=n.(n+1).(n+2)
=>S=[n.(n+1).(n+2)] : 3
tính tổng sau:
a) A=1+1/2!+1/3!...+1/n!
b) B= 1+x^2/2+x^2/3+...+x^2/n
1,Tính nhanh
A=1/3+1/3^2+1/3^3+...+1/3^2007+1/3^2008
B=1/3+1/3^2+1/3^3+...+1/3^n-1+1/3^n ; n∈N*
2,Tính tổng
a,S=1/1.2.3+1/2.3.4+1/3.4.5+..+1/2006.2007.2008
b,S=1/1.2.3+1/2.3.4+1/3.4.5+..+1/n.(n+1).(n+2); n∈N*
A = \(\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{2007}}+\frac{1}{3^{2008}}\)
3A= \(1+\frac{1}{3}+...+\frac{1}{3^{2006}}+\frac{1}{3^{2007}}\)
3A-A= \(1-\frac{1}{3^{2008}}\)
B = \(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{n-1}}+\frac{1}{3^n}\)
3B = \(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{n-2}}+\frac{1}{3^{n-1}}\)
3B - B = \(1-\frac{1}{3^n}\)
Ta có :
\(A=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{2007}}+\frac{1}{3^{2008}}\)
\(\Leftrightarrow\)\(3A=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{2006}}+\frac{1}{3^{2007}}\)
\(\Leftrightarrow\)\(3A-A=\left(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{2006}}+\frac{1}{3^{2007}}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{2007}}+\frac{1}{3^{2008}}\right)\)
\(\Leftrightarrow\)\(2A=1-\frac{1}{3^{2008}}\)
\(\Leftrightarrow\)\(2A=\frac{3^{2008}-1}{3^{2008}}\)
\(\Leftrightarrow\)\(A=\frac{3^{2008}-1}{3^{2008}}:2\)
\(\Leftrightarrow\)\(A=\frac{3^{2008}-1}{2.3^{2008}}\)
Vậy \(A=\frac{3^{2008}-1}{2.3^{2008}}\)
Tính các tổng sau :
a; H = 1 + 2 + 3 + 5 + ..... + ( n - 3 ) + ( n - 2 ) + ( n - 1 ) + n