Giải phương trình :
\(\log_2x+2\log_7x=2+\log_2x\log_7x\)
giải bất phương trình
a) \(log_5x>6\)
b) \(log_7x< 2\)
c) \(log_2x\le3\)
d) \(log_{\dfrac{1}{3}}x>27\)
a.
ĐKXĐ: \(x>0\)
\(log_5x>6\Rightarrow x>6^5\Rightarrow x>7776\)
b.
ĐKXĐ: \(x>0\)
\(log_7x< 2\Rightarrow\left\{{}\begin{matrix}x>0\\x< 7^2\end{matrix}\right.\) \(\Rightarrow0< x< 49\)
c.
\(log_2x\le3\Rightarrow\left\{{}\begin{matrix}x>0\\x\le3^2\end{matrix}\right.\) \(\Rightarrow0< x\le9\)
d.
\(log_{\dfrac{1}{3}}x>27\Rightarrow\left\{{}\begin{matrix}x>0\\x< \left(\dfrac{1}{3}\right)^{27}\end{matrix}\right.\)
\(\Rightarrow0< x< \dfrac{1}{3^{27}}\)
1) Giải phương trình:
\(4\log_2^2x+x\log_2\left(x+2\right)=2\log_2x\left[x+\log_2\left(x+2\right)\right]\)
2) Tìm tất cả bộ hai số thực \(\left(x;y\right)\) thỏa mãn đẳng thức:
\(x^{\log_2x}+4^y+\left(x-5\right)2^{y+1}+57=18x\)
Giải phương trình :
\(\log_2x+\log_5\left(2x+1\right)=2\)
Điều kiện x>0. Nhận thấy x=2 là nghiệm
- Nếu x>2 thì : \(\log_2x>\log_22=1;\log_5\left(2x+1\right)>\log_5\left(2.2x+1\right)=1\)
Suy ra phương trình vô nghiệm.
Tương tự khi 0<x<2
Đáp số x=2
Giải bất phương trình sau :
\(2\log_2^3x+5\log_2^2x+\log_2x-2\ge0\)
Đặt \(t=\log_2x\) ta có bất phương trình :
\(2t^3+5t^2+t-2\ge0\)
hay
\(\left(t+2\right)\left(2t^2+t-1\right)\ge0\)
Bất phương trình này có nghiệm -2\(\le t\)\(\le-1\) hoặc \(t\ge\frac{1}{2}\)
Suy ra nghiệm của bất phương trình là :
\(\frac{1}{4}\le x\)\(\le\frac{1}{2}\) hoặc \(x\ge\sqrt{2}\)
Giải bất phương trình :
\(x^{\log_2x}
Với điều kiện x>0. lấy Logarit cơ số 2 hai vế ta có :
\(\log_2x.\log_2x<5\Leftrightarrow-\sqrt{5}<\log_2x<\sqrt{5}\)
Từ đó suy ra, nghiệm của bất phương trình là :
\(2^{-\sqrt{5}}\)<x<\(2^{\sqrt{5}}\)
Số nghiệm của phương trình
\(2x^3-3x^2+log_2\left(x^2+1\right)-log_2x=0\)
Giải phương trình
\(\log_2x+\log_3\left(x+1\right)=\log_4\left(x+2\right)+\log_5\left(x+3\right)\)
Điều kiện x>0. Nhận thấy x=2 là nghiệm.
Nếu x>2 thì
\(\frac{x}{2}>\frac{x+2}{4}>1\); \(\frac{x+1}{3}>\frac{x+3}{5}>1\)
Suy ra
\(\log_2\frac{x}{2}>\log_2\frac{x+2}{4}>\log_4\frac{x+2}{4}\)hay :\(\log_2x>\log_2\left(x+2\right)\)
\(\log_3\frac{x+1}{3}>\log_3\frac{x+3}{5}>\log_5\frac{x+3}{5}\) hay \(\log_3\left(x+1\right)>\log_5\left(x+3\right)\)
Suy ra vế trái < vế phải, phương trình vô nghiệm.
Đáp số x=2
Giải hệ phương trình \(\left\{{}\begin{matrix}log_2x=-\dfrac{1}{3}log_2y\\3^x+3^y=4\end{matrix}\right.\)
ĐKXĐ: \(x;y>0\)
\(log_2x=-\dfrac{1}{3}log_2y\Rightarrow log_2x=log_2y^{-\dfrac{1}{3}}\)
\(\Rightarrow x=y^{-\dfrac{1}{3}}=\dfrac{1}{\sqrt[3]{y}}\Rightarrow y=\dfrac{1}{x^3}\)
Thế vào pt dưới: \(3^x+3^{\dfrac{1}{x^3}}=4\)
- Với \(x\ge1\Rightarrow\left\{{}\begin{matrix}3^x\ge3^1=3\\\dfrac{1}{x^3}>0\Rightarrow3^{\dfrac{1}{x^3}}>1\end{matrix}\right.\) \(\Rightarrow3^x+3^{\dfrac{1}{x^3}}>4\) pt vô nghiệm
- Với \(0< x< 1\Rightarrow\left\{{}\begin{matrix}\dfrac{1}{x^3}>1\Rightarrow3^{\dfrac{1}{x^3}}>3\\3^x>1\end{matrix}\right.\) \(\Rightarrow3^x+3^{\dfrac{1}{x^3}}>4\) pt vô nghiệm
Vậy hệ đã cho vô nghiệm
Giải các phương trình logarir sau :
a) \(lgx+lg\left(x+9\right)=1\)
b) \(\log_2x+\log_4x+\log_8x=11\)
c) \(\log_4x^3+3\log_{25}x+\log_{\sqrt{125}}\sqrt{x^3}=\frac{11}{2}\)
d) \(\log_2x+\log_3x+\log_4x=\log_{20}x\)
d) Điều kiện x>0. Áp dụng công thức đổi cơ số, ta có :
\(\log_2x+\log_3x+\log_4x=\log_{20}x\)
\(\Leftrightarrow\log_2x+\frac{\log_2x}{\log_23}+\frac{\log_2x}{\log_24}=\frac{\log_2x}{\log_220}\)
\(\Leftrightarrow\log_2x\left(1+\frac{1}{\log_23}+\frac{1}{2}+\frac{1}{\log_220}\right)=0\)
\(\Leftrightarrow\log_2x\left(\frac{3}{2}+\log_22-\log_{20}2\right)=0\)
Ta có \(\frac{3}{2}+\log_22-\log_{20}2>\frac{3}{2}+0-1>0\)
Do đó, từ phương trình trên, ta phải có \(\log_2x=0\) hay \(x=2^0=1\)
Vậy nghiệm duy nhất của phương trình là \(x=1\)
c) Điều kiện x>0, đưa về cùng cơ số 5, ta có :
\(\log_5x^3+3\log_{25}x+\log_{\sqrt{25}}\sqrt{x^3}=\frac{11}{2}\)
\(\Leftrightarrow3\log_5x+3\log_{5^2}x+\log_{5^{\frac{3}{2}}}x^{\frac{3}{2}}=\frac{11}{2}\)
\(\Leftrightarrow3\log_5x+3\frac{1}{2}\log_5x+\frac{3}{2}.\frac{2}{3}\log_5x=\frac{11}{2}\)
\(\Leftrightarrow\frac{11}{2}\log_5x=\frac{11}{2}\)
\(\Leftrightarrow\log_5x=1\)
\(\Leftrightarrow x=5^1=5\) thỏa mãn
Vậy phương trình chỉ có 1 nghiệ duy nhất \(x=5\)
b) Điều kiện x>0. Đưa về cùng cơ số 2, ta có :
\(\log_2x+\log_{2^2}x+\log_{2^3}x=11\Leftrightarrow\log_2x+\frac{1}{2}\log_2x+\frac{1}{3}\log_2x=11\)
\(\Leftrightarrow\frac{11}{6}\log_2x=11\)
Do đó \(\log_2x=6\)
và \(x=2^6=64\)
Vậy phương trình có nghiệm duy nhất là \(x=64\)