Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Thu Quyên
Xem chi tiết
Tran Thi Ha Phuong
Xem chi tiết
Cô Hoàng Huyền
6 tháng 3 2018 lúc 11:26

ĐK: \(x\ne\pm m\)

\(\frac{m}{x-m}+\frac{3m^2-4m+3}{m^2-x^2}=\frac{1}{x+m}\)

\(\Leftrightarrow\frac{m\left(x+m\right)}{x^2-m^2}-\frac{3m^2-4m+3}{x^2-m^2}-\frac{x-m}{x^2-m^2}=0\)

\(\Leftrightarrow\frac{mx+m^2-3m^2+4m-3-x+m}{x^2-m^2}=0\)

\(\Leftrightarrow mx+m^2-3m^2+4m-3-x+m=0\)

\(\Leftrightarrow\left(m-1\right)x-2m^2+5m-3=0\)

Với \(m-1=0\Leftrightarrow m=1\), khi đó \(-2m^2+5m-3=0\)

Vậy thì phương trình có vô số nghiệm khác \(\pm1.\)

Với \(m-1\ne0\Leftrightarrow m\ne1\)

Khi đó phương trình có nghiệm duy nhất \(x=\frac{2m^2-5m+3}{m-1}=2m-3\)

KL:

Với \(m=\pm1,\) phương trình vô số nghiệm khác \(\pm1.\)

Với \(m\ne\pm1,\) phương trình có một nghiệm duy nhất \(x=2m-3\)

Phạm Hoàng Hải
Xem chi tiết
Trường lại
Xem chi tiết
nguyen le duy hung
Xem chi tiết
thu
Xem chi tiết
≧✯◡✯≦✌
Xem chi tiết
not good at math
26 tháng 2 2016 lúc 17:18

điều kiện :  \(\begin{cases}x\ne1\\x\ne2\end{cases}\)

phương trình:  \(\Leftrightarrow\left(x+m\right)\left(x-2\right)=\left(x+3\right)\left(x-1\right)\)

                      \(\Leftrightarrow x^2+\left(m-2\right)x-2m=x^2+2x-3\)

                      \(\Leftrightarrow\left(m-4\right)x=2m-3\)

+ m = 4 phương trình vô nghiệm

+ m\(\ne\) 4 phương trình  \(\Leftrightarrow x=\frac{2m-3}{m-4}\)

 

do điều kiện : \(\begin{cases}x\ne1\\x\ne2\end{cases}\)nên  \(\begin{cases}\frac{2m-3}{m+1}\ne1\\\frac{2m-3}{m-4}\ne2\end{cases}\)  \(\Leftrightarrow\)  \(\begin{cases}2m-3\ne m-4\\2m-3\ne2m-8\end{cases}\)

                                                           \(\Leftrightarrow m\ne-1\)

vậy:         + \(m\in\left\{4;-1\right\}\): phương trình vô nghiệm

               + \(m\in R\text{​ /}\left\{4;-1\right\}\)      :phương trình có nghiệm duy nhất \(x=\frac{2m-3}{m-4}\)

Thiên An
Xem chi tiết
Ngọc Vĩ
24 tháng 2 2016 lúc 10:18

Tớ làm nhầm rồi

+) x = 1 => pt vô nghĩa

+) x \(\ne\)0 => pt trờ thành : x2 + 2x - m = 0

Có: \(\Delta=\left(-2\right)^2-4.\left(-m\right)=4+4m\)

Với \(\Delta=0\Rightarrow m=-1\) (pt có nghiệm kép) : x = -2

Với \(\Delta>0\Rightarrow m>-1\) (pt có 2 nghiệm phân biệt): \(x=\frac{-2+\sqrt{4+4m}}{2};x=\frac{-2-\sqrt{4+4m}}{2}\)

Với \(\Delta<0\Rightarrow m<-1\) (pt vô nghiệm) : \(x\in\phi\)

Vậy pt vô nghĩa khi x = 1

       pt có nghĩa khi x khác 1

        - có nghiệm kép: m = -1

        - có 2 nghiệm phân biệt: m > -1

        - vô nghiệm: m < -1

 

Ngọc Vĩ
24 tháng 2 2016 lúc 10:11

+) m = 1 => pt k có nghĩa

+) x\(\ne1\) => pt => x2 + 2x - m = 0 

Có: \(\Delta'=1^2-\left(-m\right)=1+m\)

Với \(\Delta=0\Rightarrow1+m=0\Rightarrow m=-1\) (pt có nghiệm kép): x = \(\frac{-2}{1}=-2\)

Với \(\Delta>0\Rightarrow m>-1\) (pt có 2 nghiệm phân biệt): \(x=\frac{-2+\sqrt{m+1}}{2};x=\frac{-2-\sqrt{m+1}}{2}\)

Với \(\Delta<0\Rightarrow m<-1\) (pt vô nghiệm) : x \(\in\phi\)

Vậy có nghiệm kép khi m = -1

        có 2 nghiệm phân biệt khi m > -1

        vô nghiệm khi m < -1

Bắc Băng Dương
24 tháng 2 2016 lúc 10:15

Điều kiện \(x-1\ne0\) hay \(x\ne1\) Với điều kiện đó, ta có

\(\frac{x^2+2x-m}{x-1}=0\Leftrightarrow x^2+2x-m=0\)   (1)

Phương trình bậc hai (1) có \(\Delta'=1+m\)  Xét các trường hợp sau :

- Nếu \(\Delta'<0\)

hay \(m<-1\) thì phương trình (1) vô nghiệm

- Nếu \(\Delta'\ge0\)

hay \(m\ge-1\) thì phương trình (1) có hai nghiệm  \(x_{1;2}=-1\pm\sqrt{1+m}\)

Nếu một trong hai nghiệm đó bằng 1, thì ta cso \(1^2+2.1-m=0\) hay \(m=3\)

Khi đó (1) còn có nghiệm \(x=-3\) thỏa mãn điều kiện \(x\ne1\)

Nên ta có kết luận 

* Khi \(m<-1\) phương trình vô nghiệm

* Khi \(m=3\) phương trình có 1 nghiệm \(x=-3\)

* Khi \(m\ge-1;m\ne3\) phương trình có hai nghiệm \(x=-1\pm\sqrt{1=m}\)

cẩm ly nguyễn
Xem chi tiết