\(\int\limits^{\frac{\pi}{2}}_{\frac{\pi}{4}}\frac{Sin2x}{1-cos^4x}dx\)
\(\int\limits^{\frac{\pi}{3}}_{\frac{\pi}{4}}\frac{\ln\left(\tan x\right)}{\sin2x}dx\)
\(=\frac{1}{2}\int\limits^{\frac{\pi}{3}}_{\frac{\pi}{4}}\ln\left(\tan x\right)d\left[\ln\left(\tan x\right)\right]=\frac{1}{4}\left[\ln^2\left(\tan x\right)\right]|^{\frac{\pi}{3}}_{\frac{\pi}{4}}=\frac{1}{4}\left(\ln^2\sqrt{3}-0\right)=\frac{1}{16}\ln^23\)
Đặt \(t=\tan x\Rightarrow\begin{cases}dt=\frac{dt}{\cos^2}=\left(1+t^2\right)dx\rightarrow dx=\frac{dt}{1+t^2}\\x=\frac{\pi}{4}\rightarrow t=1;x=\frac{\pi}{3}\rightarrow t=\sqrt{3}\end{cases}\)
Khi đó : \(I=\int\limits^{\sqrt{3}}_1\frac{\ln t}{\frac{2t}{1+t^2}}.\frac{dt}{1+t^2}=\frac{1}{2}\int\limits^{\sqrt{3}}_1\frac{\ln t}{t}dt=\frac{1}{2}J\left(1\right)\)
\(J=\int\limits^{\sqrt{3}}_1\frac{\ln t}{t}dt=\int\limits^{\sqrt{3}}_1\ln.d\left(\ln t\right)=\frac{1}{2}\ln^2t|^{\sqrt{3}}_1=\frac{1}{2}\left(\ln^2\sqrt{3}-0\right)=\frac{1}{8}\ln^23\)
Thay vào (1) ta có : \(I=\frac{1}{16}\ln^23\)
1.\(\int_0^{\dfrac{\pi}{4}}\dfrac{\sin2x}{\sqrt{1+\cos^4x}}dx\)
2.\(\int_0^{ln3}\dfrac{e^x}{\sqrt{e^x+1}+1}dx\)
3.\(\int_1^2\dfrac{3x+1}{\sqrt{x^2+3x+9}}dx\)
4.\(\int\limits^{\dfrac{\pi}{3}}_{-\dfrac{\pi}{3}}\sin x\sqrt{3+\cos^6x}dx\)
Tính các tích phân sau :
a) \(\int\limits^1_0\left(y^3+3y^2-2\right)dy\)
b) \(\int\limits^4_1\left(t+\dfrac{1}{\sqrt{t}}-\dfrac{1}{t^2}\right)dt\)
c) \(\int\limits^{\dfrac{\pi}{2}}_0\left(2\cos x-\sin2x\right)dx\)
d) \(\int\limits^1_0\left(3^s-2^s\right)^2ds\)
e) \(\int\limits^{\dfrac{\pi}{3}}_0\cos3xdx+\int\limits^{\dfrac{3\pi}{2}}_0\cos3xdx+\int\limits^{\dfrac{5\pi}{2}}_{\dfrac{3\pi}{2}}\cos3xdx\)
g) \(\int\limits^3_0\left|x^2-x-2\right|dx\)
h) \(\int\limits^{\dfrac{5\pi}{4}}_{\pi}\dfrac{\sin x-\cos x}{\sqrt{1+\sin2x}}dx\)
i) \(\int\limits^4_0\dfrac{4x-1}{\sqrt{2x+1}+2}dx\)
Câu nào mình biết thì mình làm nha.
1) Đổi thành \(\dfrac{y^4}{4}+y^3-2y\) rồi thế số.KQ là \(\dfrac{-3}{4}\)
2) Biến đổi thành \(\dfrac{t^2}{2}+2\sqrt{t}+\dfrac{1}{t}\) và thế số.KQ là \(\dfrac{35}{4}\)
3) Biến đổi thành 2sinx + cos(2x)/2 và thế số.KQ là 1
Tính các tích phân sau
1.I=\(\int\limits^{\frac{\Pi}{4}}_0\) (x+1)sin2xdx
2.I=\(\int\limits^2_1\frac{x^2+3x+1}{x^2+x}dx\)
3.I=\(\int\limits^2_1\frac{x^2-1}{x^2}lnxdx\)
4. I=\(\int\limits^1_0x\sqrt{2-x^2}dx\)
5.I=\(\int\limits^1_0\frac{\left(x+1\right)^2}{x^2+1}dx\)
6. I=\(\int\limits^5_1\frac{dx}{1+\sqrt{2x-1}}\)
7. I=\(\int\limits^3_1\frac{1+ln\left(x+1\right)}{x^2}dx\)
8.I=\(\int\limits^1_0\frac{x^3}{x^4+3x^2+2}dx\)
9. I=\(\int\limits^{\frac{\Pi}{4}}_0x\left(1+sin2x\right)dx\)
10. I=\(\int\limits^3_0\frac{x}{\sqrt{x+1}}dx\)
Tính tích phân :
\(I=\int\limits^{\frac{\pi}{3}}_{\frac{\pi}{3}}\frac{\ln\left(4\tan x\right)}{\sin2x.\ln\left(2\tan x\right)}dx\)
Ta có \(I=\int\limits^{\frac{\pi}{3}}_{\frac{\pi}{4}}\frac{\ln2.\ln\left(2\tan x\right)}{\sin2x.\ln\left(2\tan x\right)}dx=\ln2\int\limits^{\frac{\pi}{3}}_{\frac{\pi}{4}}\frac{dx}{\sin2x.\ln\left(2\tan x\right)}+\int\limits^{\frac{\pi}{3}}_{\frac{\pi}{4}}\frac{dx}{\sin2x}\)
Tính \(\ln2\int\limits^{\frac{\pi}{3}}_{\frac{\pi}{4}}\frac{dx}{\sin2x.\ln\left(2\tan x\right)}=\frac{\ln2}{2}\int\limits^{\frac{\pi}{3}}_{\frac{\pi}{4}}\frac{d\left[\ln\left(2\tan x\right)\right]}{\ln2\left(2\tan x\right)}=\frac{\ln2}{2}\left[\ln\left(\ln\left(2\tan x\right)\right)\right]|^{\frac{\pi}{3}}_{\frac{\pi}{4}}=\frac{\ln2}{2}.\ln\left(\frac{\ln2\sqrt{3}}{\ln2}\right)\)
Tính \(\int\limits^{\frac{\pi}{3}}_{\frac{\pi}{4}}\frac{dx}{\sin2x}=\frac{1}{2}\ln\left(\tan x\right)|^{\frac{\pi}{3}}_{\frac{\pi}{4}}=\frac{1}{2}\ln\sqrt{3}\)
Vậy \(I=\frac{\ln2}{2}\ln\left(\frac{\ln2\sqrt{3}}{\ln2}\right)+\frac{1}{2}\ln\sqrt{3}\)
cho \(\int\limits^2_0\frac{dx}{x^2-x+1}=\int\limits^{\frac{\pi}{3}}_{-\frac{\pi}{6}}\frac{2}{a}dx\) . Chon khẳng định đúng
Đề thiếu. Bạn xem lại đề.
\(\int\limits^{\frac{\Pi}{3}}_{\frac{\Pi}{4}}\frac{1}{sin^2xcos^2x}dx\)
\(\int\limits^{ }_{ }\frac{cos^2x+sin^2x}{sin^2xcos^2x}dx=\int\limits\frac{1}{sin^2x}dx+\int\limits^{ }_{ }\frac{1}{cos^2x}dx=tanx+cotgx\)
thay cân vào ta tính đc
\(\int\limits^{\frac{\pi}{6}}_0\frac{1}{cosx.cos\left(x+\frac{pi}{4}\right)}dx\)
Tính tích phân :
\(I=\int\limits^{\frac{\pi}{2}}_0\frac{\sin x}{\cos2x+3\cos x+2}dx\)
\(I=\int\limits^{\frac{\pi}{2}}_0\frac{\sin x}{\cos2x+3\cos x+2}dx=\int\limits^{\frac{\pi}{2}}_0\frac{\sin x}{2\cos^2x+3\cos x+1}dx\)
Đặt \(\cos x=t\Rightarrow dt=-\sin dx\)
Với \(x=0\Rightarrow t=1\)
Với \(x=\frac{\pi}{2}\Rightarrow t=0\)
\(I=\int\limits^1_0\frac{dt}{2t^2+3t+1}=\int\limits^1_0\frac{dt}{\left(2t+1\right)\left(t+1\right)}=2\int\limits^1_0\left(\frac{1}{2t+1}+\frac{1}{2t+1}\right)dt\)
\(=\left(\ln\frac{2t+1}{2t+1}\right)|^1_0=\ln\frac{3}{2}\)