Chương 3: NGUYÊN HÀM. TÍCH PHÂN VÀ ỨNG DỤNG

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Hồ Thị Phong Lan

\(\int\limits^{\frac{\pi}{3}}_{\frac{\pi}{4}}\frac{\ln\left(\tan x\right)}{\sin2x}dx\)

Huỳnh Thị Đông Thi
4 tháng 4 2016 lúc 21:30

\(=\frac{1}{2}\int\limits^{\frac{\pi}{3}}_{\frac{\pi}{4}}\ln\left(\tan x\right)d\left[\ln\left(\tan x\right)\right]=\frac{1}{4}\left[\ln^2\left(\tan x\right)\right]|^{\frac{\pi}{3}}_{\frac{\pi}{4}}=\frac{1}{4}\left(\ln^2\sqrt{3}-0\right)=\frac{1}{16}\ln^23\)

Phạm Thái Dương
4 tháng 4 2016 lúc 21:36

Đặt \(t=\tan x\Rightarrow\begin{cases}dt=\frac{dt}{\cos^2}=\left(1+t^2\right)dx\rightarrow dx=\frac{dt}{1+t^2}\\x=\frac{\pi}{4}\rightarrow t=1;x=\frac{\pi}{3}\rightarrow t=\sqrt{3}\end{cases}\)

Khi đó : \(I=\int\limits^{\sqrt{3}}_1\frac{\ln t}{\frac{2t}{1+t^2}}.\frac{dt}{1+t^2}=\frac{1}{2}\int\limits^{\sqrt{3}}_1\frac{\ln t}{t}dt=\frac{1}{2}J\left(1\right)\)

\(J=\int\limits^{\sqrt{3}}_1\frac{\ln t}{t}dt=\int\limits^{\sqrt{3}}_1\ln.d\left(\ln t\right)=\frac{1}{2}\ln^2t|^{\sqrt{3}}_1=\frac{1}{2}\left(\ln^2\sqrt{3}-0\right)=\frac{1}{8}\ln^23\)

Thay vào (1) ta có : \(I=\frac{1}{16}\ln^23\)


Các câu hỏi tương tự
Ngô Thị Ánh Vân
Xem chi tiết
Tô Cường
Xem chi tiết
Thành Công
Xem chi tiết
Nguyễn Tùng Anh
Xem chi tiết
Tô Cường
Xem chi tiết
Huỳnh Như
Xem chi tiết
Võ Bình Minh
Xem chi tiết
Nguyễn Hà Minh Thanh
Xem chi tiết
Tô Cường
Xem chi tiết