\(\int\limits^{pi/2}_0\frac{sinx}{\left(sinx+\sqrt{3}cosx\right)^2}dx\)
\(\int\limits^{\frac{\pi}{3}}_0\frac{sinx}{cosx\sqrt{3+sin^2x}}dx\)
\(\int\limits^{ln8}_0\frac{e^x}{1+\sqrt{3e^x+1}}dx\)
Chỉ mình câu tích phân này với !!
\(\int\limits^{pi/2}_0\left(\frac{1}{cos^2\left(sinx\right)}-tan^2\left(cosx\right)\right)dx\)
I=\(\int\limits^b_a\left(x+\dfrac{\pi}{6}\right)\) dx theo m,n biết rằng:
\(\int\limits^a_b\left(sinx+cosx\right)\) dx=m ;\(\int\limits^b_a\left(sinx-cosx\right)dx\)
=n
Bạn xem lại xem có type thiếu đề không? \((x+\frac{\pi}{6})\) có sin hay cos, tan ở phía trước không?
\(\int\limits^a_b\left(sinx+cosx\right)dx=\left(sinx-cosx\right)|^a_b=sina-cosa-sinb+cosb=m\)
\(\int\limits^b_a\left(sinx-cosx\right)dx=\left(-cosx-sinx\right)|^b_a=-cosa-sina+cosb+sinb=n\)
\(\Rightarrow\left\{{}\begin{matrix}m+n=-2\left(cosa-cosb\right)\\m-n=2\left(sina-sinb\right)\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}cosa-cosb=-\dfrac{m+n}{2}\\sina-sinb=\dfrac{m-n}{2}\end{matrix}\right.\)
\(I=\int\limits^b_asin\left(x+\dfrac{\pi}{6}\right)dx=-cos\left(x+\dfrac{\pi}{6}\right)|^b_a=cos\left(a+\dfrac{\pi}{6}\right)-cos\left(b+\dfrac{\pi}{6}\right)\)
\(=cosa.cos\left(\dfrac{\pi}{6}\right)-sina.sin\left(\dfrac{\pi}{6}\right)-cosb.cos\left(\dfrac{\pi}{6}\right)+sinb.sin\left(\dfrac{\pi}{6}\right)\)
\(=\dfrac{\sqrt{3}}{2}\left(cosa-cosb\right)-\dfrac{1}{2}\left(sina-sinb\right)\)
\(=\dfrac{-\sqrt{3}}{4}\left(m+n\right)-\dfrac{1}{4}\left(m-n\right)\)
Cho hàm số f(x) liên tục trên \([-\Pi;\Pi]\)
Chứng minh: \(\int\limits^{\Pi}_0x.f\left(sinx\right)dx=\dfrac{\Pi}{2}\int\limits^{\Pi}_0f\left(sinx\right)dx\)
Tính tích phân \(I=\int\limits^{\dfrac{\Pi}{2}}_0\left(2cos^2\dfrac{x}{2}+xcosx\right)e^{sinx}dx\)
Giúp mình với ạ♥
\(I=\int\limits^{\dfrac{\pi}{2}}_0\left(1+cosx+x.cosx\right)e^{sinx}dx=\int\limits^{\dfrac{\pi}{2}}_0e^{sinx}dx+\int\limits^{\dfrac{\pi}{2}}_0\left(x+1\right).cosx.e^{sinx}dx=I_1+I_2\)
Xét \(I_2\), đặt \(\left\{{}\begin{matrix}u=x+1\\dv=cosx.e^{sinx}dx\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}du=dx\\v=e^{sinx}\end{matrix}\right.\)
\(\Rightarrow I_2=\left(x+1\right).e^{sinx}|^{\dfrac{\pi}{2}}_0-\int\limits^{\dfrac{\pi}{2}}_0e^{sinx}dx=\left(\dfrac{\pi}{2}+1\right)e-1-I_1\)
\(\Rightarrow I=I_1+\left(\dfrac{\pi}{2}+1\right)e-1-I_1=\left(\dfrac{\pi}{2}+1\right)e-1\)
Tính các tích phân sau :
a) \(\int\limits^1_0\left(y^3+3y^2-2\right)dy\)
b) \(\int\limits^4_1\left(t+\dfrac{1}{\sqrt{t}}-\dfrac{1}{t^2}\right)dt\)
c) \(\int\limits^{\dfrac{\pi}{2}}_0\left(2\cos x-\sin2x\right)dx\)
d) \(\int\limits^1_0\left(3^s-2^s\right)^2ds\)
e) \(\int\limits^{\dfrac{\pi}{3}}_0\cos3xdx+\int\limits^{\dfrac{3\pi}{2}}_0\cos3xdx+\int\limits^{\dfrac{5\pi}{2}}_{\dfrac{3\pi}{2}}\cos3xdx\)
g) \(\int\limits^3_0\left|x^2-x-2\right|dx\)
h) \(\int\limits^{\dfrac{5\pi}{4}}_{\pi}\dfrac{\sin x-\cos x}{\sqrt{1+\sin2x}}dx\)
i) \(\int\limits^4_0\dfrac{4x-1}{\sqrt{2x+1}+2}dx\)
Câu nào mình biết thì mình làm nha.
1) Đổi thành \(\dfrac{y^4}{4}+y^3-2y\) rồi thế số.KQ là \(\dfrac{-3}{4}\)
2) Biến đổi thành \(\dfrac{t^2}{2}+2\sqrt{t}+\dfrac{1}{t}\) và thế số.KQ là \(\dfrac{35}{4}\)
3) Biến đổi thành 2sinx + cos(2x)/2 và thế số.KQ là 1
\(\int\limits^{\frac{\pi}{3}}_0\frac{tanxdx}{\sqrt{1-ln^2\left(cosx\right)}}\)
\(\int\limits^{\frac{\pi}{3}}_0\frac{tanxdx}{\sqrt{1-ln^2\left(cosx\right)}}\)
Hãy chỉ ra kết quả nào dưới đây đúng :
a) \(\int\limits^{\dfrac{\pi}{2}}_0\sin xdx+\int\limits^{\dfrac{3\pi}{2}}_{\dfrac{\pi}{2}}\sin xdx+\int\limits^{2\pi}_{\dfrac{3\pi}{2}}\sin xdx=0\)
b) \(\int\limits^{\dfrac{\pi}{2}}_0\left(\sqrt[3]{\sin x}-\sqrt[3]{\cos x}\right)dx=0\)
c) \(\int\limits^{\dfrac{1}{2}}_{-\dfrac{1}{2}}\ln\dfrac{1-x}{1+x}dx=0\)
d) \(\int\limits^2_0\left(\dfrac{1}{1+x+x^2+x^3}+1\right)dx=0\)