Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Thanh Phong Nguyễn
Xem chi tiết
Nguyễn Lê Phước Thịnh
15 tháng 6 2023 lúc 16:52

B/A

\(=\dfrac{1+\dfrac{2020}{2}+1+\dfrac{2019}{3}+...+1+\dfrac{1}{2021}+1}{\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2021}+\dfrac{1}{2022}}\)

\(=\dfrac{2022\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2021}+\dfrac{1}{2022}\right)}{\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2021}+\dfrac{1}{2022}}=2022\)

THỊ HÀ Đào
Xem chi tiết
Taylor Kun
Xem chi tiết
D O T | ➽『Nhàn』亗
Xem chi tiết
Xyz OLM
18 tháng 10 2020 lúc 14:16

Ta có \(\frac{a}{a^2}=\frac{a^2}{a^3}=...=\frac{a^{2020}}{a^{2021}}=\frac{a+a^2+....+a^{2020}}{a^2+a^3+...+a^{2021}}\)

=> \(\frac{a}{a^2}=\frac{a+a^2+...+a^{2020}}{a^2+a^3+...+a^{2021}}\)

=> \(\left(\frac{a}{a^2}\right)^{2020}=\left(\frac{a+a^2+...+a^{2020}}{a^2+a^3+...+a^{2021}}\right)^{2020}\)

=> \(\frac{a}{a^2}.\frac{a}{a^2}...\frac{a}{a^2}=\left(\frac{a+a^2+...+a^{2020}}{a^2+a^3+...+a^{2021}}\right)^{2020}\)(2020 thừa số \(\frac{a}{a^2}\))

=> \(\frac{a}{a^2}.\frac{a^2}{a^3}...\frac{a^{2020}}{a^{2021}}=\left(\frac{a+a^2+...+a^{2020}}{a^2+a^3+...+a^{2021}}\right)^{2020}\)(Vì \(\frac{a}{a^2}=\frac{a^2}{a^3}=...=\frac{a^{2020}}{a^{2021}}\))

=> \(\frac{a}{a^{2021}}=\left(\frac{a+a^2+...+a^{2020}}{a^2+a^3+...+a^{2021}}\right)^{2020}\)(đpcm)

Khách vãng lai đã xóa
Ngô Chi Lan
Xem chi tiết
FL.Hermit
22 tháng 8 2020 lúc 15:35

TA XÉT PHÂN THỨC TỔNG QUÁT SAU:   

\(A=\frac{1}{n\sqrt{n+1}+\left(n+1\right)\sqrt{n}}\)

\(A=\frac{1}{\sqrt{n\left(n+1\right)}.\left(\sqrt{n}+\sqrt{n+1}\right)}\)

\(A=\frac{\left(\sqrt{n+1}-\sqrt{n}\right)}{\sqrt{n\left(n+1\right)}.\left(\sqrt{n+1}+\sqrt{n}\right)\left(\sqrt{n+1}-\sqrt{n}\right)}\)

\(A=\frac{\sqrt{n+1}-\sqrt{n}}{\sqrt{n\left(n+1\right)}\left(n+1-n\right)}\)

\(A=\frac{\sqrt{n+1}-\sqrt{n}}{\sqrt{n\left(n+1\right)}}\)

\(A=\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\)

THAY LẦN LƯỢT CÁC GIÁ TRỊ n từ 1 => 2021 vào ta được: 

=>    \(A=\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{2020}}-\frac{1}{\sqrt{2021}}\)

=>   \(A=1-\frac{1}{\sqrt{2021}}=\frac{\sqrt{2021}-1}{\sqrt{2021}}\)

VẬY    \(A=\frac{\sqrt{2021}-1}{\sqrt{2021}}.\)

Khách vãng lai đã xóa
Nobi Nobita
22 tháng 8 2020 lúc 15:41

Ta có: \(\frac{1}{\left(a-1\right)\sqrt{a}+a.\sqrt{a-1}}=\frac{a-\left(a-1\right)}{\sqrt{a}.\sqrt{a-1}.\left(\sqrt{a}+\sqrt{a-1}\right)}\)

\(=\frac{\left(\sqrt{a}-\sqrt{a-1}\right)\left(\sqrt{a}+\sqrt{a-1}\right)}{\sqrt{a}.\sqrt{a-1}.\left(\sqrt{a}+\sqrt{a-1}\right)}=\frac{\sqrt{a}-\sqrt{a-1}}{\sqrt{a}.\sqrt{a-1}}\)

\(=\frac{\sqrt{a}}{\sqrt{a}.\sqrt{a-1}}-\frac{\sqrt{a-1}}{\sqrt{a}.\sqrt{a-1}}=\frac{1}{\sqrt{a-1}}-\frac{1}{\sqrt{a}}\)

Thay lần lượt các giá trị của a bằng \(2;3;4;........;2021\)ta được:

\(S=\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+.........+\frac{1}{\sqrt{2020}}-\frac{1}{\sqrt{2021}}\)

\(=\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2021}}=1-\frac{1}{\sqrt{2021}}\)

Khách vãng lai đã xóa
Hoàng Bảo Ngọc
Xem chi tiết
Citii?
2 tháng 12 2023 lúc 20:41

A = B

Sir Nghi
Xem chi tiết
bui duy phu
16 tháng 7 2023 lúc 21:28

a) Ta có:

2A=2.(12+122+123+...+122020+122021)2�=2.12+122+123+...+122  020+122  021

2A=1+12+122+123+...+122019+1220202�=1+12+122+123+...+122  019+122  020

Suy ra: 2A−A=(1+12+122+123+...+122019+122020)2�−�=1+12+122+123+...+122  019+122  020

                             −(12+122+123+...+122020+122021)−12+122+123+...+122  020+122  021

Do đó A=1−122021<1�=1−122021<1.

Lại có B=13+14+15+1360=20+15+12+1360=6060=1�=13+14+15+1360=20+15+12+1360=6060=1.

Vậy A < B.

 

trantiendat
Xem chi tiết
Lệ Tuyết
Xem chi tiết
Nguyễn Lâm Phong
16 tháng 5 2021 lúc 8:26

𝑝=−2856279824648840

Khách vãng lai đã xóa