\(\int\limits^{\frac{\Pi}{3}}_{\frac{\Pi}{4}}\frac{1}{sin^2xcos^2x}dx\)
\(\int\limits^{\frac{\pi}{3}}_0\frac{sinx}{cosx\sqrt{3+sin^2x}}dx\)
\(\int\limits^{ln8}_0\frac{e^x}{1+\sqrt{3e^x+1}}dx\)
cho \(\int\limits^2_0\frac{dx}{x^2-x+1}=\int\limits^{\frac{\pi}{3}}_{-\frac{\pi}{6}}\frac{2}{a}dx\) . Chon khẳng định đúng
Đề thiếu. Bạn xem lại đề.
1). \(\int\limits^{\frac{\pi}{3}}_{\frac{\pi}{4}}\frac{\cos2x}{\cos^2x\sin^2x}dx=a+b\sqrt{3}\left(a,b\in Q\right)\).Tính giá trị của biểu thức
A=a+b.
????
2). \(I=\int\limits^{\frac{\pi}{2}}_0\sin x\left(\sin x+\frac{\cos2x}{\sqrt{1+3\cos x}}\right)dx+a\pi-\frac{b}{c}\left(a,b,c\in Q\right).\)Với \(\frac{b}{c}\) là phân số tối giản.Tính giá trị của biểu thức A=a+b+c.
bạn nào làm được mấy câu này không.??giúp mình với..
Mình giải giúp b câu 1 này
Ở phần mẫu bạn biến đổi \(cos^2xsin^2x=\frac{1}{4}\left(4cos^2xsin^2x\right)=\frac{1}{4}sin^22x\)
Đặt t = sin2x => \(d\left(t\right)=2cos2xdx\)
Đổi cận \(x=\frac{\pi}{4}=>t=1\) \(x=\frac{\pi}{3}=>t=\frac{\sqrt{3}}{2}\)
Ta có biểu thức trên sau khi đổi biến và cận
\(\int\limits^{\frac{\sqrt{3}}{2}}_1\frac{\frac{1}{2}dt}{\frac{1}{4}t^2}=\int\limits^{\frac{\sqrt{3}}{2}}_1\frac{2}{t^2}dt=\left(-\frac{2}{t}\right)\)lấy cận từ 1 đến \(\frac{\sqrt{3}}{2}\) \(=-\frac{2}{\frac{\sqrt{3}}{2}}-\left(-\frac{2}{1}\right)=2-4\frac{\sqrt{3}}{3}\) => a=2 và b=-4/3 vậy A=2/3 nhé
Câu 1)
Ta có:
\(I=\int ^{\frac{\pi}{3}}_{\frac{\pi}{4}}\frac{\cos 2x}{\cos^2 x\sin^2 x}dx=\int ^{\frac{\pi}{3}}_{\frac{\pi}{4}}\frac{\cos^2x-\sin ^2x}{\cos^2 x\sin^2 x}dx\)
\(=\int ^{\frac{\pi}{3}}_{\frac{\pi}{4}}\frac{dx}{\sin^2 x}-\int ^{\frac{\pi}{3}}_{\frac{\pi}{4}}\frac{dx}{\cos ^2x}=-\int ^{\frac{\pi}{3}}_{\frac{\pi}{4}}d(\cot x)-\int ^{\frac{\pi}{3}}_{\frac{\pi}{4}}d(\tan x)\)
\(=-\left ( \frac{\sqrt{3}}{3}-1 \right )-(\sqrt{3}-1)=2-\frac{4}{3}\sqrt{3}\Rightarrow a+b=\frac{2}{3}\)
Câu 2)
\(I=\underbrace{\int ^{\frac{\pi}{2}}_{0}\sin ^2xdx}_{A}+\underbrace{\int ^{\frac{\pi}{2}}_{0}\frac{\sin x\cos 2xdx}{\sqrt{1+3\cos x}}}_{B}\)
Có \(A=\int ^{\frac{\pi}{2}}_{0}\frac{1-\cos 2x}{2}dx=\)\(\left.\begin{matrix} \frac{\pi}{2}\\ 0\end{matrix}\right|\left ( \frac{x}{2}-\frac{\sin 2x}{4} \right )=\frac{\pi}{4}\)
\(B=-\int ^{\frac{\pi}{2}}_{0}\frac{(2\cos ^2x-1)d(\cos x)}{\sqrt{1+3\cos x}}\). Ta đặt \(\sqrt{1+3\cos x}=t\)
\(B=B=\int ^{2}_{1}\frac{\left [ \frac{2(t^2-1)^2}{9}-1\right ]d\left ( \frac{t^2-1}{3} \right )}{t}=\frac{2}{27}\int ^{2}_{1}\left ( 2t^4-4t^2-7 \right )dt\)
\(=\left.\begin{matrix} 2\\ 1\end{matrix}\right|\frac{2}{27}\left ( \frac{2t^5}{5}-\frac{4t^3}{3}-7t \right )=\frac{-118}{405}\)
\(\left\{\begin{matrix} a=\frac{1}{4}\\ b=-118\\ c=405\end{matrix}\right.\Rightarrow a+b+c=287,25\)
Bài này mà ngồi trong phòng thi mà giải tay thì chết cmnr. Bạn lên youtube xem anh theluc giải bằng casio cho nhanh.
Tính các tích phân sau
1.I=\(\int\limits^{\frac{\Pi}{4}}_0\) (x+1)sin2xdx
2.I=\(\int\limits^2_1\frac{x^2+3x+1}{x^2+x}dx\)
3.I=\(\int\limits^2_1\frac{x^2-1}{x^2}lnxdx\)
4. I=\(\int\limits^1_0x\sqrt{2-x^2}dx\)
5.I=\(\int\limits^1_0\frac{\left(x+1\right)^2}{x^2+1}dx\)
6. I=\(\int\limits^5_1\frac{dx}{1+\sqrt{2x-1}}\)
7. I=\(\int\limits^3_1\frac{1+ln\left(x+1\right)}{x^2}dx\)
8.I=\(\int\limits^1_0\frac{x^3}{x^4+3x^2+2}dx\)
9. I=\(\int\limits^{\frac{\Pi}{4}}_0x\left(1+sin2x\right)dx\)
10. I=\(\int\limits^3_0\frac{x}{\sqrt{x+1}}dx\)
\(\int\limits^{\frac{\pi}{2}}_{\frac{\pi}{4}}\frac{Sin2x}{1-cos^4x}dx\)
\(\int\limits^{\frac{\pi}{3}}_{\frac{\pi}{4}}\frac{\ln\left(\tan x\right)}{\sin2x}dx\)
\(=\frac{1}{2}\int\limits^{\frac{\pi}{3}}_{\frac{\pi}{4}}\ln\left(\tan x\right)d\left[\ln\left(\tan x\right)\right]=\frac{1}{4}\left[\ln^2\left(\tan x\right)\right]|^{\frac{\pi}{3}}_{\frac{\pi}{4}}=\frac{1}{4}\left(\ln^2\sqrt{3}-0\right)=\frac{1}{16}\ln^23\)
Đặt \(t=\tan x\Rightarrow\begin{cases}dt=\frac{dt}{\cos^2}=\left(1+t^2\right)dx\rightarrow dx=\frac{dt}{1+t^2}\\x=\frac{\pi}{4}\rightarrow t=1;x=\frac{\pi}{3}\rightarrow t=\sqrt{3}\end{cases}\)
Khi đó : \(I=\int\limits^{\sqrt{3}}_1\frac{\ln t}{\frac{2t}{1+t^2}}.\frac{dt}{1+t^2}=\frac{1}{2}\int\limits^{\sqrt{3}}_1\frac{\ln t}{t}dt=\frac{1}{2}J\left(1\right)\)
\(J=\int\limits^{\sqrt{3}}_1\frac{\ln t}{t}dt=\int\limits^{\sqrt{3}}_1\ln.d\left(\ln t\right)=\frac{1}{2}\ln^2t|^{\sqrt{3}}_1=\frac{1}{2}\left(\ln^2\sqrt{3}-0\right)=\frac{1}{8}\ln^23\)
Thay vào (1) ta có : \(I=\frac{1}{16}\ln^23\)
\(\int\limits^{\frac{\pi}{6}}_0\frac{1}{cosx.cos\left(x+\frac{pi}{4}\right)}dx\)
Tính tích phân :
\(I=\int\limits^{\frac{\pi}{2}}_0\frac{\sin x}{\cos2x+3\cos x+2}dx\)
\(I=\int\limits^{\frac{\pi}{2}}_0\frac{\sin x}{\cos2x+3\cos x+2}dx=\int\limits^{\frac{\pi}{2}}_0\frac{\sin x}{2\cos^2x+3\cos x+1}dx\)
Đặt \(\cos x=t\Rightarrow dt=-\sin dx\)
Với \(x=0\Rightarrow t=1\)
Với \(x=\frac{\pi}{2}\Rightarrow t=0\)
\(I=\int\limits^1_0\frac{dt}{2t^2+3t+1}=\int\limits^1_0\frac{dt}{\left(2t+1\right)\left(t+1\right)}=2\int\limits^1_0\left(\frac{1}{2t+1}+\frac{1}{2t+1}\right)dt\)
\(=\left(\ln\frac{2t+1}{2t+1}\right)|^1_0=\ln\frac{3}{2}\)
\(\int\limits^{\frac{\pi}{2}}_0\frac{Cosx}{1+sin^2x}\)
\(\int\limits^{\frac{\pi}{2}}_0\frac{cosx}{1+sin^2x}dx=\int\limits^{\frac{\pi}{2}}_0\frac{d\left(sinx\right)}{1+sin^2x}=arctan\left(sinx\right)|^{\frac{\pi}{2}}_0=\frac{\pi}{4}\)