Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Linh
Xem chi tiết
Nguyễn Việt Lâm
22 tháng 7 2021 lúc 22:51

Chọn ngẫu nhiên 3 bạn: \(C_{15}^3=455\) cách

Chọn 3 bạn không có mặt lớp A: \(C_{11}^3=165\) cách

Chọn 3 bạn ko có mặt lớp B: \(C_{10}^3=120\)

Chọn 3 bạn ko có mặt lớp C: \(C_9^3=84\)

a.

Chọn 3 bạn có mặt đủ 3 lớp: \(455-\left(165+120+84\right)=86\) cách

b.

Chọn 3 bạn có ít nhất 1 bạn lớp A: \(455-165=290\) cách

c.

Không hiểu ý câu hỏi?

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
21 tháng 3 2018 lúc 6:09

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
13 tháng 8 2017 lúc 11:28

Đáp án A

Chọn 5 học sinh từ đội văn nghệ của nhà trường, ta xét các trường hợp

TH1. 1 học sinh lớp 12A, 2 học sinh lớp 12B và 2 học sinh lớp 12C có C 4 1 . C 3 2 . C 2 2 = 12  cách.

TH2. 2 học sinh lớp 12A, 1 học sinh lớp 12B và 2 học sinh lớp 12C  có  C 4 2 . C 3 1 . C 2 2 = 18   cách

TH3. 3 học sinh lớp 12A, 1 học sinh lớp 12B và 1 học sinh lớp 12C có C 4 3 . C 3 1 . C 2 1 = 24 cách.

TH4. 1 học sinh lớp 12A, 3 học sinh lớp 12B và 1 học sinh lớp 12C có C 4 1 . C 3 3 . C 2 1 = 8 cách.

TH5. 2 học sinh lớp 12A, 2 học sinh lớp 12B và 1 học sinh lớp 12C → có C 4 2 . C 3 2 . C 2 1 = 36 cách.

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
8 tháng 5 2019 lúc 15:36

Đáp án là C

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
25 tháng 9 2017 lúc 5:19

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
2 tháng 7 2017 lúc 8:26

Đáp án B

Phương pháp.

Chia ra các khả năng có thể có của học sinh các lớp. Tính số cách chọn có thể có của mỗi trường hợp này. Lấy tổng kết quả các khả năng ở trên lại.

Lời giải chi tiết.

Ta xét các trường hợp sau. 

Có 1 học sinh lớp 12C có 2 học sinh lớp 12B và 2 học sinh lớp 12A khi đó ta có 2 C 3 2 C 4 2   =   36  

 cách chọn.

Có 1 học sinh lớp 12C có 3 học sinh lớp 12B và 1 học sinh lớp 12A khi đó ta có  2 C 3 3 C 4 1   =   8 cách chọn.

Có 1 học sinh lớp 12C có 1  học sinh lớp 12B và 3 học sinh lớp 12A khi đó ta có  2 C 3 1 C 4 3   =   24  cách chọn.

Có 2 học sinh lớp 12C có 1 học sinh lớp 12B và 2 học sinh lớp 12A khi đó ta có  C 3 1 C 4 2   =   18 cách chọn.

Có 2 học sinh lớp 12C có 2 học sinh lớp 12B và 1 học sinh lớp 12A khi đó ta có C 3 2 C 4 1   =   12  cách chọn.

Vậy tổng số cách chọn là 36 + 8 + 24 + 18 + 12 = 98

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
10 tháng 7 2019 lúc 6:33

Đáp án A

Chọn 5 học sinh từ đội văn nghệ của nhà trường, ta xét các trường hợp

TH1.1 học sinh lớp 12A, 2 học sinh lớp 12B và 2 học sinh lớp 12C

⇒ có C 4 1 . C 3 2 . C 2 2 = 12  cách

TH2.2 học sinh lớp 12A, 1 học sinh lớp 12B và 2 học sinh lớp 12C

có  C 4 3 . C 3 1 . C 2 2 = 18 cách

TH3.3 học sinh lớp 12A, 1 học sinh lớp 12B và 1 học sinh lớp 12C

có  C 4 3 . C 3 1 . C 2 1 = 24 cách

TH4. 1 học sinh lớp 12A, 3 học sinh lớp 12B và 1 học sinh lớp 12C

⇒ có  C 4 1 . C 3 3 . C 2 1 = 8 cách

TH5. 2 học sinh lớp 12A, 2 học sinh lớp 12B và 1 học sinh lớp 12C

có  C 4 2 . C 3 2 . C 2 1 = 36 cách

Hoa Thiên Lý
Xem chi tiết
Nguyễn Thái Bình
24 tháng 1 2016 lúc 21:22

[Số cách chọn 4 em sao cho thuộc không quá 2 trong 3 lớp] = [Số cách chọn 4 em trong 12 em] - [số cách chọn mà mỗi lớp có ít nhất 1 em]

 Mà:

 [Số cách chọn 4 em trong 12 em] = \(C^4_{12}=\frac{12!}{4!\left(12-4\right)!}=495\)

 [số cách chọn mà mỗi lớp có ít nhất 1 em] = [Số cách chọn lớp A có 2 hs, lớp B, C mỗi lớp có 1 hs] + [Số cách chọn lớp B có 2 hs, lớp A, C mỗi lớp có 1 hs] + [Số cách chọn lớp C có 2 hs, lớp A, B mỗi lớp có 1 hs]

\(C^2_5.C^1_4.C^1_3+C^1_5.C^2_4.C^1_3+C^1_5.C^1_4.C^2_3\)

= 120            +    90          + 60

= 270

Vậy [Số cách chọn 4 em sao cho thuộc không quá 2 trong 3 lớp] = 495 - 270 =....

Imimaro Rinrin
Xem chi tiết
GoKu Đại Chiến Super Man
26 tháng 1 2016 lúc 21:13

bạn ấn vào đúng 0 sẽ ra kết quả, mình giải được rồi dễ lắm

Cao Thi Thuy Duong
26 tháng 1 2016 lúc 21:14

olm tru diem bn pham ngoc thach di!!!!

Vũ Quý Đạt
26 tháng 1 2016 lúc 21:14

Phạm Ngọc Thạch lik tik thế mà olm ko trừ điển