tinh gia tri cua A tai x=5 ma ko thay so truc tiep
\(A=2015-6x+6x^2-6x^3+6x^4-6x^5+x^6\)
tinh gia tri cua bieu thuc
a, x^3+12x^2+48X+64 tai x=6
B, x^3-6X^2+12x-8 tai x=22
Bài làm
a) x3 + 12x2 + 48x + 64 tại x =6
Ta có: x3 + 12x2 + 48x + 64
<=> x3 + 3 . x2 . 4 + 3 . x . 42 + 33
<=> ( x + 3 )3
Thay x = 6 vào ( x + 3 )3 ta được:
( 6 + 3 )3
= 93 = 729
Vậy giá trị của biểu thức là 729 tại x = 6
b) x3 - 6x2 + 12x - 8 tại x = 22
Ta có: x3 - 6x2 + 12x - 8
<=> x3 - 3 . x2 . 2 + 3 . x . 22 - 23
<=> ( x - 2 )3
Thay x = 22 vào ( x - 2 )3 ta được:
( 22 - 2 )3 = 203 = 8000
Vậy giá trị của biểu thức trên là 8000 tại x = 22.
# Học tốt #
gia tri cua a de pt a(x-1)/5+6x-17/10+2-3x/4=0 vo nghiem la a=?
Tinh gia tri bieu thuc sau bang cach hop li:
A= x^3 - 6x^2 + 12x + 10 tai X= 22
A = x3 - 6x2 + 12x + 10
A = (x3 - 6x2 + 12x - 8) + 18
A = (x - 2)3 + 18
tại x = 22, có:
A = (x - 2)3 + 18 = (22 - 2)3 + 18 = 203 + 18 = 8000 + 18 = 8018
Tính giá trị biểu thức sau bằng cách hợp lí :
A = x3 - 6x2 +12x + 10
= x3 - 3.x2.2 + 3.x.22 - 23 + 18
= ( x - 2 )3 + 18
Thay x = 22 , ta có :
A = 203 + 18 = 8018
Thu gọn:
\(A=x^3-6x^2+12x+10\)
\(A=x^3-6x^2+12x-8+18\)
\(A=\left(x^3-6x^2+12x-8\right)+18\)
\(A=\left(x^3-3.x^2.2+3.x.2^2-2^3\right)+18\)
\(A=\left(x-2\right)^3+18\)
Thay \(x=22\) vào biểu thức A, ta được:
\(A=\left(22-2\right)^3+18\)
\(A=20^3+18\)
\(A=8000+18\)
\(A=8018.\)
Vậy giá trị của biểu thức A tại \(x=22\) là \(8018.\)
Chúc bạn học tốt!
1. gia tri cua x thoa man (2x+3)(x+1)2-(2x+3)(2x-3)
2. so nghiem cua da thuc x3+6x2+11x+6 la ?
3. bieu thuc C = 8-5x-2x2 dat gia tri lon nhat tai x = ?
chung minh bieu thuc ko phu thuoc vao gia tri cua bien
A=(2x+5).(4x^2-6x+9)-2(4x.3-1)
B=(x+3)^3-(x+9).(x^2+27)
\(A=\left(2x+5\right)\left(4x^2-6x+9\right)-2\left(4x^3-1\right)\)
\(8x^3-12x^2+18x+20x^2-30x+45-8x^3+2=8x^2-12x+47\)
Vậy biểu thức phụ thuộc biến x
\(B=\left(x+3\right)^3-\left(x+9\right)\left(x^2+27\right)\)
\(=x^3+9x^2+27x+27-x^3-27x-9x^2-243=27-243=-216\)
Vậy biểu thức ko phụ thuộc biến x
Lời giải:
$A=(2x+5)(4x^2-6x+9)-2(4x^3-1)$
$=(2x+3)(4x^2-6x+9)+2(4x^2-6x+9)-(8x^3-2)$
$=(2x)^3+3^3+8x^2-12x+18-8x^3+2=48x^2-12x+47$ vẫn phụ thuộc vào giá trị của biến. Bạn xem lại.
$B=(x+3)^3-(x+9)(x^2+27)$
$=x^3+9x^2+27x+27-(x^3+27x+9x^2+243)$
$=x^3+9x^2+27x+27-x^3-9x^2-27x-243$
$=-216$ không phụ thuộc vào giá trị của biến (đpcm)
a) Ta có: \(A=\left(2x+3\right)\left(4x^2-6x+9\right)-2\left(4x^3-1\right)\)
\(=8x^3+27-8x^3+2\)
=29
b) Ta có: \(B=\left(x+3\right)^3-\left(x+9\right)\left(x^2+27\right)\)
\(=x^3+9x^2+27x+3-x^3-27x-9x^2-243\)
=-240
Biết \(x^2-2x-1=0\). Tính biểu thức \(\dfrac{x^6-6x^5+12x^4-8x^3+2015}{x^6-8x^3-12x^2+6x+2015}\)
Ta có : \(x^2-2x-1=0
\)
\(\Leftrightarrow \)\((x-1)^2=2\)
\(\Leftrightarrow
\)\(\left[\begin{array}{}
x-1=\sqrt{2}\\
x-1=-\sqrt{2}
\end{array} \right.\)
Đặt P = \(\dfrac{x^6-6x^5+12x^4-8x^3+2015}{x^6-8x^3-12x^2+6x+2015}\)
=\(\dfrac{(x^6-2x^5-x^4)-(4x^5-8x^4-4x^3)+(5x^4-10x^3-5x^2)-(2x^3-4x^2-2x)+(x^2-2x-1)+2016}
{(x^6-2x^5-x^4)+(2x^5-4x^4-2x^3)+(5x^4-10x^3-5x^2)+(4x^3-8x^2-4x)+(x^2-2x-1)+12x+2016}\)
=\(\dfrac{x^4(x^2-2x-1)-4x^3(x^2-2x-1)+5x^2(x^2-2x-1)-2x(x^2-2x-1)+(x^2-2x-1)+2016}
{x^4(x^2-2x-1)+2x^3(x^2-2x-1)+5x^2(x^2-2x-1)+4x(x^2-2x-1)+(x^2-2x-1)+12x+2016}\)
=\(\dfrac{2016}{12x + 2016}\)
=\(\dfrac{2016}{12(x+1)+2004}\)
=\(\dfrac{168}{x+1+167}\)
=\(\left[\begin{array}{}
\dfrac{168}{\sqrt{2}+167}\\
\dfrac{168}{-\sqrt{2}+167}
\end{array} \right.\)
Chú thích: Hình như mẫu là \(-6x\) chứ không phải \(6x
\) bạn ạ. Hay là mình phân tích sai thì cho mình xin lỗi nhé.
cho x+y =1 . tinh gia tri cua bieu thuc A=x^3+y^3+3xy
chox-y=1. tinh gia tri cua bieu thuc B=x^3-y^3-3xy
cho x+y=1 . tinh gia tri cua bieu thuc C=x^3+y^3+3xy(x^2+y^2)+6x^2*y^2(x+y)
Câu 1: Ta có: A = \(x^3+y^3+3xy=x^3+y^3+3xy\times1=x^3+y^3+3xy\left(x+y\right)\)
\(=\left(x+y\right)^3=1^3=1\)
Câu 2: Ta có: \(B=x^3-y^3-3xy=\left(x-y\right)\left(x^2+xy+y^2\right)-3xy\)
\(=x^2+xy+y^2-3xy=x^2-2xy+y^2=\left(x-y\right)^2=1^2=1\)
Câu 3: Ta có: \(C=x^3+y^3+3xy\left(x^2+y^2\right)-6x^2.y^2\left(x+y\right)\)
\(=x^3+y^3+3xy\left(x^2+2xy+y^2-2xy\right)+6x^2y^2\)
\(=x^3+y^3+3xy\left(x+y\right)^2-3xy.2xy+6x^2y^2\)
\(=x^3+y^3+3xy.1-6x^2y^2+6x^2y^3\)
\(=x^3+y^3+3xy\left(x+y\right)=\left(x+y\right)^3=1^3=1\)
Tim gia tri nho nhat A=x2-2x
Tim gia tri lon nhat B=-x2+4x-5
Chung minh rang: x4+6x3+11x2+6x chia het cho 24 voi moi x thuoc N
A= x2-2x = ( x2-2x + 1 ) - 1 = -1 (x-1)2 . Vì (x-1)2 lớn hơn hoặc bằng 0 ==> Min A = 1. Khi x = 1
B = -( x2- 4x + 4 +1) = -1-(x-2)2 < -1 ==> Max B = - 1 khi x = 2
Phân tích đa thức x4 + 6x3+11x2+6x = x(x+1)(x+2)(x+3) thành nhân tử tích của 4 số tự nhiên liên tiếp chia hết cho 24
1/cho a+b+c=0 . cmr: a^3+b^3+c^3=3abc
2/ Cho A=x6-6x5+6x4-6x3+6x2-6x+6.Tính giá trị của A khi x=5
1.ta có:
x^3 + y^3 + z^3 - 3xyz = (x+y)^3 + z^3 - 3x^2y - 3xy^2 - 3xyz
= (x+y)^3 + z^3 - 3xy(x + y + z)
= (x+y+z)^3 - 3(x+y)^2.z - 3(x+y)z^2 - 3xy(x + y + z)
= (x+y+z)^3 - 3(x+y)z(x+ y + z) - 3xy(x + y + z)
=(x+y+z)[(x+y+z)^2 - 3(x+y)z - 3xy]
với x+y+z = 0 => x^3 + y^3 + z^3 - 3xyz = 0 => x^3 + y^3 + z^3 = 3xyz
2.
x=5
=>6=x+1
=> A=x6-6x5+6x4-6x3+6x2-6x+6=x6-(x+1).x5+(x+1)x4-(x+1)x3+(x+1)x2-(x+1)x+(x+1)
=x6-x6-x5+x5-x4+x4-x3+x3-x2+x2-x+x+1
=1
vậy A=1 khi x=5
1,
\(a^3+b^3+c^3=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)+3abc=3abc\)
2,
\(A=\left(x-1\right)\left(x-5\right)\left(x^4+x^2+1\right)+1\)
x=5 thì A=1
a+b+c=0 =>a+b= -c
=> (a+b)^3=-c^3
=>a^3+b^3+c^3= -3ab(a+b)
=>a^3+b^3+c^3=3abc (vì a+b=c)
=> dpcm