Cho tam giác ABC có góc B = 60o, BC = 8cm, AB+AC=12cm. Tính các độ dài AB,AC
Cho tam giác ABC có AB=6cm có góc B=60 độ, BC=8cm, AB+AC=12cm. TÍnh các độ dài AB,AC
Tam giác ABC vuông tại A, B=60.
⇒ Tam giác ABC là 1 nửa tam giác đều
⇒AB = \(\frac{BC}{2}\) =4cm.
AC=12‐4=8cm
Vậy AB=4cm
AC=8cm
Kẻ: \(AH\perp BC\).Đặt \(AB=2x\Rightarrow BH=x\Rightarrow AH=x\sqrt{3};HC=8-x\)
Áp dụng định lí Pi-ta-go có:
\(AC=\sqrt{\left(x\sqrt{3}\right)^2+\left(8-x\right)^2}=\sqrt{4x^2-16x+64}\)
Do \(AB+AC=12\Rightarrow2x+\sqrt{4x^2-16x+64}=12\)
Giải phương trình có x = 2,5
\(\Rightarrow AB=2x=2.2,5=5cm\)
Thay số vào tính được AC =))
Cho tam giác ABC, góc \(\widehat{B} \) = 60o, BC = 8cm, AB + AC = 12cm. Tính AB
Dựng \(AH\) vuông góc \(BC\). Đặt \(AB=x\Rightarrow AH=x.\sin60^0=\dfrac{x\sqrt{3}}{2};BH=x\cos60^0=\dfrac{x}{2}\)
\(\Rightarrow HC=BC-BH=8-\dfrac{x}{2};AC=12-x\)
Tam giác \(AHC\) vuông tại \(H\Rightarrow AC^2=AH^2+HC^2\Rightarrow\left(12-x\right)^2=\dfrac{3x^2}{4}+\left(8-\dfrac{x}{2}\right)^2\)
Giải phương trình trên ta được \(x=5\).
Vậy \(AB=5cm\).
Cho tam giác ABC có góc B = 60 độ , BC =8cm, AB + AC =12cm. Tính độ dài AB
Dựng AH vuông góc với BC, đặt AB = x, ta có : AH = x.sin B = x.sin60 = x.căn 3 / 2
HB = x.cos 60 = x/2 => HC = BC - HB = 8 - x/2 = (16 - x)/2
AC = 12 - AB = 12 - x
Trong tam giác vuông AHC : AH^2 + HC^2 = AC^2
hay (x. căn 3 /2)^2 + (16 - x)^2/4 = (12 - x)^2
<=> 3x^2 + (16 - x)^2 = 4(12 - x)^2
Giải phương trình này tìm được x = 5
Cho tam giác ABC , góc B = 60 độ, BC = 8cm; AB + AC = 12cm . Tính độ dài cạnh AB.
Cho tam giác ABC , góc B = 60 độ, BC = 8cm; AB + AC = 12cm . Tính độ dài cạnh AB.
Cho tam giác ABC có góc B = 60 độ BC=8cm AB+AC=12cm . Tính độ dài AB
giải chi tiết hộ mình với ạ!!!
Cho tam giác ABC có góc B = 60 độ, BC = 8cm, AB + AC = 12cm. Tính AB, AC
(ko dùng sin,cos)
Kẻ đường cao AH ứng với BC
Đặt \(AB=x\) với \(0< x< 12\Rightarrow AC=12-x\)
Đặt \(BH=y\Rightarrow CH=8-y\) (với \(0< y< 8\))
Trong tam giác vuông ABH ta có:
\(cosB=\dfrac{BH}{AB}\Rightarrow BH=AB.cosB=\dfrac{x}{2}\Rightarrow y=\dfrac{x}{2}\)
\(\Rightarrow CH=8-y=8-\dfrac{x}{2}\)
\(sinB=\dfrac{AH}{AB}\Rightarrow AH=AB.sinB=\dfrac{x\sqrt{3}}{2}\)
Áp dụng Pitago cho tam giác vuông ACH:
\(AC^2=AH^2+CH^2\Leftrightarrow\left(12-x\right)^2=\left(\dfrac{x\sqrt{3}}{2}\right)^2+\left(8-\dfrac{x}{2}\right)^2\)
\(\Leftrightarrow16x-80=0\Rightarrow x=5\)
\(\Rightarrow AC=12-x=7\)
Vậy \(AB=5cm,AC=7cm\)
Cho tam giác ABC có góc B = 60 độ , BC = 8cm, AB + AC = 12cm. Tính độ dài các cạnh AB, AC.
Làm theo cách ko dùng sin cos giúp mik vs mik cảm ơn nhiều
Cho tam giác ABC có góc B = 60 độ , BC = 8cm, AB + AC = 12cm. Tính độ dài các cạnh AB, AC.
Làm theo cách ko dùng sin cos giúp mik vs mik cảm ơn nhiều
Đặt cạnh BC=a=8; AB=c; AC=b
Kẻ đường cao AH. Xét tg vuông ABH có ^BAH=90-^B=90-60=30
=> BH=AB/2=c/2 (trong tg vuông cạnh đối diện góc 30 =1/2 cạnh huyền)
\(\Rightarrow AH=\sqrt{AB^2-BH^2}=\sqrt{c^2-\frac{c^2}{4}}=\frac{c\sqrt{3}}{2}.\)
\(S_{ABC}=\frac{1}{2}.BC.AH=\frac{1}{2}.8.\frac{c\sqrt{3}}{2}=2c\sqrt{3}\)
Nửa chu vi p=(a+b+c)/2=(8+12)/2=10
Áp dụng công thức he rông
\(S_{ABC}=\sqrt{p\left(p-a\right)\left(p-b\right)\left(p-c\right)}=\sqrt{10\left(10-8\right)\left(10-b\right)\left(10-c\right)}\)
\(=\sqrt{20\left(100-10c-10b+bc\right)}=\sqrt{20\left(100-10\left(c+b\right)+bc\right)}\)
\(=\sqrt{20\left(100-10.12+bc\right)}=\sqrt{20\left(bc-20\right)}=2c\sqrt{3}\)
Bình phương 2 vê \(20\left(bc-20\right)=12c^2\) (*)
Thay b=12-c vào (*) rồi giải PT bậc 2 tìm c từ đó suy ra b. Bạn tự làm nốt nhé, chúc học tốt!
T