/x-1/ + /2y+4/ = 0
Tìm x, y biết:
a. (x-1)^2 + (y+3)^2 = 0
b. 2(x-5)^4 + 5|2y-7|^5 = 0
c. 3(x- 2y)^2004 + 4|y+1/2| = 0
d. |x+3y-1| + (2y-1/2)^2000 = 0
nhanh lên mình cần gấp lắm!
Tìm các cặp số (x;y) nguyên
x^2-2y+x-2=-7
(x+2)^2+y^2-2y+1=0
x^2-6x+9+(2y-4)^4=0
\(\left\{{}\begin{matrix}\frac{1-x+2y}{x-2y}+x+2y=4\\\frac{x+2y}{x-2y}-6=0\end{matrix}\right.\)
ĐKXĐ: \(x\ne2y\)
Biến đổi pt dưới:
\(x+2y-6\left(x-2y\right)=0\)
\(\Rightarrow5x=14y\Rightarrow x=\frac{14y}{5}\)
Thay vào pt trên:
\(\frac{1-\frac{14}{5}y+2y}{\frac{14}{5}y-2y}+\frac{14}{5}y+2y=4\)
\(\Leftrightarrow\frac{5}{4y}+\frac{24}{5}y-5=0\)
\(\Leftrightarrow\frac{24}{5}y^2-5y+\frac{5}{4}=0\) \(\Rightarrow\left[{}\begin{matrix}y=\frac{5}{12}\\y=\frac{5}{8}\end{matrix}\right.\) \(\Rightarrow x=\frac{14}{5}y=...\)
Tìm x,y thuộc Z biết
a.(x-1).(2y-4)=0
b.(3x-2).(y-3)=6
c.(3x-4).(2y-1)=2
d.2xy-3x-2y+8=0
Giải phương trình:
1. \(\left\{{}\begin{matrix}5x-2y=-9\\4x+3y=2\end{matrix}\right.\)
2. \(\left\{{}\begin{matrix}2x+y-4=0\\x+2y-5=0\end{matrix}\right.\)
3. \(\left\{{}\begin{matrix}2x+3y-7=0\\x+2y-4=0\end{matrix}\right.\)
4. \(\left\{{}\begin{matrix}5x+6y=17\\9x-y=7\end{matrix}\right.\)
1)
HPT \(\Leftrightarrow\left\{{}\begin{matrix}15x-6y=-27\\8x+6y=4\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}2y=5x+9\\23x=-23\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=2\end{matrix}\right.\)
Vậy \(\left(x;y\right)=\left(-1;2\right)\)
2)
HPT \(\Leftrightarrow\left\{{}\begin{matrix}2x+y=4\\2x+4y=10\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}-3y=-6\\x=5-2y\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}y=2\\x=1\end{matrix}\right.\)
Vậy \(\left(x;y\right)=\left(1;2\right)\)
3)
HPT \(\Leftrightarrow\left\{{}\begin{matrix}4x+6y=14\\3x+6y=12\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=2\\2y=4-x\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\)
Vậy \(\left(x;y\right)=\left(2;1\right)\)
4)
HPT \(\Leftrightarrow\left\{{}\begin{matrix}5x+6y=17\\54x-6y=42\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}59x=59\\y=9x-7\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\)
Vậy \(\left(x;y\right)=\left(1;2\right)\)
cho ab=3. CMR 2 pt (a^3+a)x+a^2y+a^4+1=0 , (b^3+b)x+b^2y+b^4+1=0 ko có no chung
Tìm x,y thuộc Z biết
a.(x-1).(2y-4)=0
b.(3x-2).(y-3)=6
c.(3x-4).(2y-1)=2
d.2xy-3x-2y+8=0
a: (x-1)(2y-4)=0
=>x-1=0 và 2y-4=0
=>x=1 và y=2
b: (3x-2)(y-3)=6
mà x,y là số nguyên
nên \(\left(3x-2;y-3\right)\in\left\{\left(1;6\right);\left(-2;-3\right)\right\}\)
\(\Leftrightarrow\left(x,y\right)\in\left\{\left(1;9\right);\left(0;0\right)\right\}\)
d: \(\left(3x-4\right)\left(2y-1\right)=2\)
\(\Leftrightarrow\left(3x-4;2y-1\right)\in\left\{\left(2;1\right);\left(-2;-1\right)\right\}\)
\(\Leftrightarrow\left(x,y\right)=\left(2;1\right)\)
a)2x.(x-1)=0
b)x.(2x-4)=0
c)(x-3).(2y+1)=7
d)xy+3x-2y=11
a) 2x.(x-1)=0
\(\Leftrightarrow\orbr{\begin{cases}2x=0\\x-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=1\end{cases}}}\)
b) x.(2x-4)=0
\(\Leftrightarrow\orbr{\begin{cases}x=0\\2x-4=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=2\end{cases}}\)
(x-3)(2y+1)=7
<=> x-3 và 2y+1 thuộc Ư(7) = { -1;1;7;-7}
Xét các trường hợp :
Khi x-3 =1;2y+1=7 và ngược lại tìm ra x và y
Khi x-3=-1 và 2y+1=-7 < cũng ngược lại x-3=-7;2y+1=-1>
Vậy các cặp số (x;y) thỏa mãn là:.............
Tìm x và y thõa mãn
2(x - 5)^4 + 5[2y-7]^5 = 0
3(x - 2y)^2004 + 4[y + 1 phần 2] = 0
[x + 3y - 1] + (2y - 1 phần 2 )^2000 = 0
Mình không biết viết phân số nên viết 1 phần 2 mong bạn giải giùm ai giải dc sẽ like
Cho x,y,z khác 0
x+ 2y+3z=4
1/x + 1/2y + 1/3z = 0
Tính C=x^2+4y^2+9x^2
theo bài ra ta có
\(\frac{1}{x}+\frac{1}{2y}+\frac{1}{3z}=0\Leftrightarrow6yz+3xz+2xy=0\) (1)
\(x+2y+3z=4\Leftrightarrow\left(x+2y+3z\right)^2=16\)
\(\Leftrightarrow x^2+4y^2+9z^2+2\left(6yz+3xz+2xy\right)=16\)(2)
thay (1) vào (2) ta được
\(x^2+4y^2+9z^2=16\)