Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Quốc Khánh
Xem chi tiết
Nguyễn Nhật Minh
13 tháng 12 2015 lúc 16:03

\(A=\frac{1}{2^2}+\frac{1}{2^4}+\frac{1}{2^6}+\frac{1}{2^8}+...+\frac{1}{2^{100}}\)

\(4A=1+\frac{1}{2^2}+\frac{1}{2^4}+\frac{1}{2^6}+...+\frac{1}{2^{98}}\)

\(3A=4A-A=1-\frac{1}{2^{100}}<1\)

\(A<\frac{1}{3}\)

lê thị diễm quỳnh
Xem chi tiết
soyeon_Tiểu bàng giải
1 tháng 11 2016 lúc 20:03

\(A=\frac{1}{2^2}+\frac{1}{2^4}+\frac{1}{2^6}+\frac{1}{2^8}+...+\frac{1}{2^{100}}\)

\(2^2.A=1+\frac{1}{2^2}+\frac{1}{2^4}+\frac{1}{2^6}+...+\frac{1}{2^{98}}\)

\(2^2.A-A=\left(1+\frac{1}{2^2}+\frac{1}{2^4}+\frac{1}{2^6}+...+\frac{1}{2^{98}}\right)-\left(\frac{1}{2^2}+\frac{1}{2^4}+\frac{1}{2^6}+\frac{1}{2^8}+...+\frac{1}{2^{100}}\right)\)

\(4.A-A=1-\frac{1}{2^{100}}< 1\)

\(3A< 1\)

\(\Rightarrow A< \frac{1}{3}\left(đpcm\right)\)

trần thùy dương
Xem chi tiết
nhok họ nguyễn
3 tháng 9 2017 lúc 23:58

a>

\(\frac{1}{2^2}+\frac{1}{100^2}\)=1/4+1/10000

ta có 1/4<1/2(vì 2 đề bài muốn chứng minh tổng đó nhỏ 1 thì chúng ta phải xét xem có bao nhiêu lũy thừa hoặc sht thì ta sẽ lấy 1 : cho số số hạng )

1/100^2<1/2

=>A<1

Tran Thi Thu Uyen
25 tháng 4 lúc 16:22

oke

Yên Trịnh Bình
Xem chi tiết
Cẩm Cúc Nguyễn Thị
Xem chi tiết
ル・ジア・バオ
28 tháng 10 2017 lúc 19:01

Ta có: \(A=\dfrac{1}{2^2}+\dfrac{1}{2^4}+\dfrac{1}{2^6}+\dfrac{1}{2^8}+...+\dfrac{1}{2^{100}}\)

\(\Rightarrow2^2A=1+\dfrac{1}{2^2}+\dfrac{1}{2^4}+\dfrac{1}{2^6}+...+\dfrac{1}{2^{98}}\)

\(\Rightarrow2^2A-A=\left(1+\dfrac{1}{2^2}+\dfrac{1}{2^4}+\dfrac{1}{2^6}+...+\dfrac{1}{2^{98}}\right)-\left(\dfrac{1}{2^2}+\dfrac{1}{2^4}+\dfrac{1}{2^6}+\dfrac{1}{2^8}+...+\dfrac{1}{2^{100}}\right)\)

\(\Rightarrow3A=1-\dfrac{1}{2^{100}}\)

\(\Rightarrow A=\dfrac{1-\dfrac{1}{2^{100}}}{3}< \dfrac{1}{3}\)(đpcm)

nguyen hoang khang
Xem chi tiết
Trang Nguyễn
Xem chi tiết
Tran Hien
Xem chi tiết

a: \(P=5+5^2+5^3+5^4+\cdots+5^{102}\)

\(=\left(5+5^2\right)+\left(5^3+5^4\right)+\cdots+\left(5^{101}+5^{102}\right)\)

\(=5\left(1+5\right)+5^3\left(1+5\right)+\cdots+5^{101}\left(1+5\right)\)

\(=6\left(5+5^3+\cdots+5^{101}\right)\) ⋮6

b:Sửa đề: \(A=1+4+4^2+4^3+\cdots+4^{99}\)

\(=\left(1+4\right)+\left(4^2+4^3\right)+\cdots+\left(4^{98}+4^{99}\right)\)

\(=\left(1+4\right)+4^2\left(1+4\right)+\cdots+4^{98}\left(1+4\right)\)

\(=5\left(1+4^2+\cdots+4^{98}\right)\) ⋮5

c: \(B=1+2+2^2+\cdots+2^{98}\)

\(=\left(1+2+2^2\right)+\left(2^3+2^4+2^5\right)+\cdots+\left(2^{96}+2^{97}+2^{98}\right)\)

\(=\left(1+2+2^2\right)+2^3\left(1+2+2^2\right)+\cdots+2^{96}\left(1+2+2^2\right)\)

\(=7\left(1+2^3+\cdots+2^{96}\right)\) ⋮7

d:Sửa đề: \(C=1+3+3^2+3^3+\cdots+3^{103}\)

\(=\left(1+3+3^2+3^3\right)+\left(3^4+3^5+3^6+3^7\right)+\cdots+\left(3^{100}+3^{101}+3^{102}+3^{103}\right)\)

\(=\left(1+3+3^2+3^3\right)+3^4\left(1+3+3^2+3^3\right)+\cdots+3^{100}\left(1+3+3^2+3^3\right)\)

\(=40\left(1+3^4+\cdots+3^{100}\right)\) ⋮40

Nguyễn Thảo Vân
Xem chi tiết
Nguyễn Thảo Vân
29 tháng 8 2023 lúc 19:23

giúp mình với !!!!!!!!!!!!!!!!!!!!!!!!

Nguyễn Đức Trí
29 tháng 8 2023 lúc 19:25

Câu b, bài b1 chứng minh \(a=2^{2006}-1?\)