Cho tam giác ABC có AB 48, BC 50, AC 14.
a)tam giác abc là tam giác gì ? vì sao?
b)tính các góc của tam giác abc
c)kẻ đường phân giác cd .tính da,dc,db
Cho tam giác ABC vuông tại A . Tia phân giác của góc B cắt tại AC tại D. Từ D kẻ DH vuông góc với BC tại H.
a) Cho BC = 15cm , AB = 9cm . Tính AC.
b) Chứng minh tam giác ABD = tam giác HBD.
c) Tam giác ABH là tam giác gì?Vì sao?
d) Chứng minh : DC >DA.
Cho tam giác ABC vuông tại A có AB=6cm,AC=8cm,đường cao AH,tia phân giác của góc A cắt BC tại D
a)Tính độ dài đoạn thẳng BC và CD?
b)Tính chiều cao AH của tam giác ABC
c)Lấy điểm E sao cho tứ giác ADCE là hình bình hành.Kẻ EM vuông góc với AC(M thuộc AC), AN vuông góc với CE(N thuộc tia CE) Chứng minh tam giác HAC đồng dạng với tam giác MEA và CD.CH+CE.CN=AC^2
a: BC=căn 6^2+8^2=10cm
AD là phân giác
=>BD/AB=CD/AC
=>BD/3=CD/4=10/7
=>BD=30/7cm; CD=40/7cm
b: AH=6*8/10=4,8cm
a. ta có \(\hept{\begin{cases}\frac{DB}{DC}=\frac{AB}{AC}=\frac{10}{25}=\frac{2}{5}\\BD+DC=BC=30\end{cases}\Rightarrow\hept{\begin{cases}DB=\frac{60}{7}\\DC=\frac{150}{7}\end{cases}}}\)
mà \(\frac{DE}{AB}=\frac{CD}{CB}=\frac{5}{7}\Rightarrow DE=\frac{50}{7}cm\)
b.ta có \(\frac{S_{ABD}}{S_{ABC}}=\frac{BD}{BC}=\frac{2}{7}\Rightarrow S_{ABD}=\frac{120.2}{7}=\frac{240}{7}cm^2\Rightarrow S_{ACD}=S_{ABC}-S_{ABD}=\frac{600}{7}\)
mà
\(\frac{S_{AED}}{S_{ADC}}=\frac{AE}{AC}=\frac{BD}{BC}=\frac{2}{7}\Rightarrow S_{AED}=\frac{600}{7}\frac{.2}{7}=\frac{1200}{49}cm^2\Rightarrow S_{CDE}=S_{ACD}-S_{AED}=\frac{3000}{49}\)
Cho tam giác ABC vuông tại A, đường phân giác BD ( D thuộc AC ). Từ D kẻ DH vuông góc với BC.
a, Tam giác BAH là tam giác gì? Vì Sao?
b, So sánh AD và DC
c, Chứng minh: DB là phân giác của góc ADH
d, Gọi K là giao điểm của AB và DH. I là trung điểm của KC. Chứng minh: 3 điểm B; I; D thẳng hàng.
1.Cho tam giác ABC ,A=90.Biết AB+AC=49cm,AB-AC=7cm.Tính cạnh BC .
2.Cho tam giác cân ABC, AB=AC=17cm.Kẻ BDvuôngAC.Tính cạnh đáy BC, biết BD=15cm.
3. Tính cạnh đáy BC của tam giác cân ABC, biết rằng đường vuông góc BH kẻ từ B xuống cạnh AC chia AC thành 2 phần:AH=8cm,HC=3cm.
4. Một tam giác vuông có cạnh huyền là 102 cm, các cạnh góc vuông tỉ lệ với 8:5. Tính các cạnh của tam giác vuông đó.
5. Cho tam giác ABC, biết BC bằng 52cm, AB = 20cm ,AC=48 cm.
a, Chứng minh tam giác ABC vuông ở A;
b, Kẻ AH vuông góc với BC. Tính AH .
6. Cho tam giác vuông cân ABC, A=90.Qua A kẻ đường thẳng d tùy ý. Từ B và C kẻ BH vuông d. Chứng minh rằng tổng BH^2+CK^2 ko phụ thuộc vào vị trí của đường thẳng d.
7. Cho tam giác vuông ABC ,A= 90 độ. Trên nửa mặt phẳng bờ AC không chứa điểm B, kẻ tia CX sao cho CA là tia phân giác của gócBCx.Từ A kẻ AE vuông Có, từ B kẻ BD vuông AE. Gọi AH là đường cao của tam giác ABC. Chứng minh rằng :
a, A là trung điểm của DE
b, DHE=90 độ
8. Cho tam giác ABC có A bằng 90 độ,AB=8 cm,BC =17cm.Trên nửa mặt phẳng bờ AC ko chứa điểm B, vẽ tia CD vuông với AC và CD=36cm.Tính tổng độ dài các đoạn thẳngAB+BC+CD+DA.
Bài 1:
Độ dài cạnh AB: ( 49 + 7 ) : 2 = 28 (cm)
Độ dài cạnh AC: 28 - 7 = 21 (cm)
Áp dụng định lý Py-ta-go vào tam giác ABC vuông tại A có:
\(BC^2=AC^2+AB^2\)
Hay \(BC^2=21^2+28^2\)
\(\Rightarrow BC^2=441+784\)
\(\Rightarrow BC^2=1225\)
\(\Rightarrow BC=35\left(cm\right)\)
Bài 2:
Áp dụng định lý Py-ta-go vào tam giác ABD vuông tại D có:
\(AB^2=AD^2+BD^2\)
\(\Rightarrow AD^2=AB^2-BD^2\)
Hay \(AD^2=17^2-15^2\)
\(\Rightarrow AD^2=289-225\)
\(\Rightarrow AD^2=64\)
\(\Rightarrow AD=8\left(cm\right)\)
Trong tam giác ABC có:
\(AD+DC=AC\)
\(\Rightarrow DC=AC-AD=17-8=9\left(cm\right)\)
Áp dụng định lý Py-ta-go vào tam giác BCD vuông tại D có:
\(BC^2=BD^2+DC^2\)
Hay \(BC^2=15^2+9^2\)
\(\Rightarrow BC^2=225+81\)
\(\Rightarrow BC^2=306\)
\(\Rightarrow BC=\sqrt{306}\approx17,5\left(cm\right)\)
Bài 3:
Vì tam giác ABC cân tại A (gt) nên AB = AC
Mà AC = AH + HC
Hay AC= 8 + 3 = 11 (cm)
Nên AB = 11 (cm)
..........
( Phần này áp dụng định lý Py-ta-go vào tam giác và làm giống như bài 2 vậy nên mình không giải lại nữa nha bạn ) ( ^ o ^ )
Cho tam giác ABC vuông taỊ a, Biết AB=6cm,BC=10cm.Đường phân giác của góc B cắt AC tại D
a)Tính độ dài các đoạn thẳng AC,AD và DC
b)Kẻ DH vuông góc với BC(H thuộc BC). Chứng minh tam giác DHC đồng dạng vs tam giác ABC
c)Tính tỉ số diện tích của 2 tam giác DHC và ABC
a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(AB^2+AC^2=BC^2\)
\(\Leftrightarrow AC^2=BC^2-AB^2=10^2-6^2=64\)
hay AC=8(cm)
Xét ΔABC có BD là đường phân giác ứng với cạnh AC(gt)
nên \(\dfrac{AD}{AB}=\dfrac{CD}{BC}\)(Tính chất đường phân giác của tam giác)
hay \(\dfrac{AD}{6}=\dfrac{CD}{10}\)
mà AD+CD=AC(D nằm giữa A và C)
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{AD}{6}=\dfrac{CD}{10}=\dfrac{AD+CD}{6+10}=\dfrac{AC}{16}=\dfrac{8}{16}=\dfrac{1}{2}\)
Do đó:
\(\left\{{}\begin{matrix}\dfrac{AD}{6}=\dfrac{1}{2}\\\dfrac{CD}{10}=\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AD=3\left(cm\right)\\CD=5\left(cm\right)\end{matrix}\right.\)
Vậy: AC=8cm; AD=3cm; CD=5cm
b) Xét ΔDHC vuông tại H và ΔABC vuông tại A có
\(\widehat{C}\) chung
Do đó: ΔDHC\(\sim\)ΔABC(g-g)
c) Ta có: ΔDHC\(\sim\)ΔABC(cmt)
nên \(\dfrac{S_{DHC}}{S_{ABC}}=\left(\dfrac{DC}{AC}\right)^2=\left(\dfrac{5}{8}\right)^2=\dfrac{25}{64}\)
Cho tam giác abc có ab=6 ac=8 bc=10 đường phân giác của góc bac cắt cạnh bc tại d
a) tính db và dc
b) tính tỉ số diện tích của hai tam giác adb và adc
A) áp dụng tính chất đường phân giác
có : \(\dfrac{BD}{DC}\)=\(\dfrac{AB}{AC}\)=6/8=3/4
=>\(\dfrac{BD}{3}\)=\(\dfrac{DC}{4}\)=\(\dfrac{10}{7}\)
=>BD=3.10/7=30/7
=>DC=4.10/7=40/7
b) \(\dfrac{S_{ADB}}{S_{ADC}}=\dfrac{BD}{CD}=\dfrac{AB}{AC}=\dfrac{6}{8}=\dfrac{3}{4}\)
Cho tam giác ABC vuông tại A, AB = 8cm, AC = 6cm, AD là tia phân giác góc A (D thuộc BC)
a, Tính DB\DC ; DB, DC
b, Kẻ đường cao AH (H thuộc BC) . CMR: Tam giác AHB đồng dạng tam giác CHA.
c, Tính diện tích tam giác AHB và CHA.
Cho tam giác cân ABC ( AB = AC ) có góc A = 100 độ . Tia phân giác của góc B cắt AC tại D . Qua A kẻ đường vuông góc với BD cắt BC ở I
a) Chứng minh BA = BI
b) Trên tia đối của tia DB lấy điểm K sao cho DK = DA . chứng minh tam giác AIK là tam giác đều
c)Tính các góc của tam giác BCK