chứng minh 1/2(a+b+c)[(a-b)^2+(b-c)^2+(c-a)^2]=a^3+b^3+c^3-3abc
Cho a^2+b^2+c^2+3= 2(a+b+c). Chứng minh a=b=c=1
2. Chứng minh rằng nếu a+b+c=0 thì a^3+b^3+c^3=3abc
a+b+c=0.cmr a^3+b^3+c^3=3abc
em chứng minh thế này được không các thầy (cô) giáo
a+b+c=0
=>a+b=-c
=>a+b=3abc/-3ab
=>(a+b).(-3ab)=3abc
=>(a+b).(a^2-ab+b^2-a^2-2ab-b^2)=3abc
=>(a+b)(a^2-ab+b^2)-(a+b).(a^2+2ab+b^2)=3abc
=>a^3+b^3-(a+b)^3=3abc
mà a+b=-c=> a^3+b^3-(-c)^3=3abc
=>a^3+b^3+c^3=3abc
Được bạn nhé :"))))
Ủng hộ mình = cách theo dõi mình nha
a+b+c=0
\(\left(a+b+c\right)^3=0\)
\(\Leftrightarrow a^3+b^3+c^3+3a^2b+3ab^2+3a^2c+3ac^2+3b^2c+3bc^2+6abc=0\)
\(\Leftrightarrow a^3+b^3+c^3+\left(3a^2b+3ab^2+3abc\right)+\left(3a^2c+3ac^2+3abc\right)+\left(3bc^2+3b^2c+3abc\right)-3abc=0\)\(\Leftrightarrow a^3+b^3+c^3+3ab\left(a+b+c\right)+3ac\left(a+b+c\right)+3bc\left(a+b+c\right)-3abc=0\)\(\Leftrightarrow a^3+b^3+c^3-3abc=0\)
\(\Leftrightarrow a^3+b^3+c^3=3abc\)
mk ko chắc cách bn đúng nhưng cách của mk là phù hợp nhất đó
Không nên chứng minh như thế này nhé. Ở ngay phần \(a+b=\frac{3abc}{-3ab}\) đã sai sót vì bạn không tính đến trường hợp \(a=0\) hoặc $b=0$ đã thực hiện phép chia như vậy.
Sử dụng hằng đẳng thức: \((a+b)^3=a^3+b^3+3ab(a+b)\) ta có:
\(a^3+b^3+c^3=(a+b)^3-3ab(a+b)+c^3\)
Vì \(a+b+c=0\Rightarrow a+b=-c\). Thay vào biểu thức trên:
\((a+b)^3-3ab(a+b)+c^3=(-c)^3-3ab(-c)+c^3=-c^3+3abc+c^3=3abc\)
Do đó:
\(a^3+b^3+c^3=3abc\)
(a+b+c).(a2+b2+c2-ab-bc-ca)
a) Chứng minh =a3+b3+c3-3abc
b) Nếu cho a+b+c
Chứng minh a3+b3+c3=3abc
a+b+c=0
=>(a+b+c)3=0
=>a3+b3+c3+3a2b+3ab2+3b2c+3bc2+3a2c+3ac2+6abc=0
=>a3+b3+c3+(3a2b+3ab2+3abc)+(3b2c+3bc2+3abc)+(3a2c+3ac2+3abc)-3abc=0
=>a3+b3+c3+3ab(a+b+c)+3bc(a+b+c)+3ac(a+b+c)=3abc
Do a+b+c=0
=>a3+b3+c3=3abc(ĐPCM)
Cho \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=3\) và \(a+b+c=3abc\). Chứng minh \(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}=3\)
\(a+b+c=3abc\Rightarrow\dfrac{1}{bc}+\dfrac{1}{ac}+\dfrac{1}{ab}=3\)
\(\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)^2=9\)
\(\Leftrightarrow\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}+\dfrac{2}{ab}+\dfrac{2}{bc}+\dfrac{2}{ac}=9\)
\(\Leftrightarrow\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}+2\cdot3=9\)
Vậy \(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}=3\).
a^2 + b^2 + 1 lớn hơn hoặc bằng ab + a+b. Cho a+b+c=0. chứng minh a^3+b^3+c^3=3abc
•๖ۣۜAƙαĭ ๖ۣۜHαɾυмα•™ [ RBL ] ❧PEWDS☙ chỉ biết đi copy thôi à ?
a) \(a^2+b^2+1\ge ab+a+b\)
\(\Leftrightarrow2a^2+2b^2+2\ge2ab+2a+2b\)
\(\Leftrightarrow a^2-2ab+b^2+a^2-2a+1+b^2-2b+1\ge0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(a-1\right)^2+\left(b-1\right)^2\ge0\)( luôn đúng )
Dấu "=" xảy ra \(\Leftrightarrow a=b=1\)
b) \(a+b+c=0\)
\(\Leftrightarrow a+b=-c\)
\(\Leftrightarrow\left(a+b\right)^3=\left(-c\right)^3\)
\(\Leftrightarrow a^3+b^3+3ab\left(a+b\right)=-c^3\)
\(\Leftrightarrow a^3+b^3+c^3=-3ab\left(a+b\right)\)
\(\Leftrightarrow a^3+b^3+c^3=-3ab\cdot\left(-c\right)\)
\(\Leftrightarrow a^3+b^3+c^3=3abc\)( đpcm )
ta xét vế trái a^3+b^3+c^3=
[(a+b)(a^2-ab+b^2)]+c^3.(1)
Mà theo giả thuyết a+b+c=0 suy ra c= - (a+b)suy ra
c^3= -(a+b)^3
Thay vào`(1) ta co [(a+b)(a^2-ab+b^2)] - (a+b)^3
(nhân tử chúng ta có)=(a+b)[a^2-ab+b^2-(a+b)^2]
(phan h (a+b)^2) =(a+b)[a^2-ab+b^2-(a^2+2ab+b^2)]
=(a+b)(a^2-ab+b^2-a^2-2ab-b^2)
=(a+b).(-3ab)
= -(a+b).3ab (2)
theo giả thuyết ta có: a+b+c=0 suy ra c= -(a+b)
thay vào (2) ta dc
=3abc
ta kết luận :vế trái= vế phải
chúc bn hc tốt
mình có cách giải khác ngắn hơn nè:
thay a^3+b^3=(a+b)^3 -3ab(a+b) .Ta có :
a^3+b^3+c^3-3abc=0
<=>(a+b)^3 -3ab(a+b) +c^3 - 3abc=0
<=>[(a+b)^3 +c^3] -3ab.(a+b+c)=0
<=>(a+b+c). [(a+b)^2 -c.(a+b)+c^2] -3ab(a+b+c)=0
<=>(a+b+c).(a^2+2ab+b^2-ca-cb+c^2-3ab)...
<=>(a+b+c).(a^2+b^2+c^2-ab-bc-ca)=0
luôn đúng do a+b+c=0
=> vế trái = vế phải
hc tốt
Bài 2: Chứng minh
a, (a+b+c)(a\(^2\)+b\(^2\)+c\(^2\)-ab-ac-bc)= a\(^3\)+b\(^{^{ }3}\)+c\(^3\)-3abc
b, ( 3a+2b-1)(a+5)-2b(a-2)=(3a+5)(a+3)+2(7b-10)
c, 2(a+b+c)(\(\dfrac{b}{2}\)+\(\dfrac{c}{2}\)-\(\dfrac{a}{2}\))=2bc+c\(^2\)+b\(^2\)-a\(^2\)
a) \(\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)\)
\(=\left(a+b+c\right)\left(a^2+b^2+c^2\right)-\left(a+b+c\right)\left(ab+bc+ac\right)\)
\(=a^3+ab^2+ac^2+a^2b+b^3+c^2b+a^2c+b^2c+c^3-a^2b-abc-a^2c-ab^2-b^2c-abc-abc-bc^2-ac^2\)
\(=a^3+b^3+c^3-3abc\left(đpcm\right)\)
b) Bạn chỉ cần nhân bung cả 2 vế ra là được á .
c) \(2\left(a+b+c\right)\left(\dfrac{b}{2}+\dfrac{c}{2}-\dfrac{a}{2}\right)\)
\(=2\left(a+b+c\right)\left(\dfrac{b+c-a}{2}\right)\)
\(=\left(a+b+c\right)\left(b+c-a\right)\)
\(=ab+ac-a^2+b^2+bc-ab+bc+c^2-ac\)
\(=2bc+b^2+c^2-a^2\left(đpcm\right)\)
Chứng minh: (a+b+c) . (a^2 +b^2+c^2-ab-bc-ca)=a^3+b^3+c^3-3abc
Chứng minh rằng: \(\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=a^3+b^3+c^3-3abc\)
\(\left(a+b\right)^3=a^3+3a^2b+3ab^2+b^3=a^3+3ab\left(a+b\right)+b^3\)
\(\Rightarrow a^3+b^3=\left(a+b\right)^3-3ab\left(a+b\right)\) (1)
Thay (1) vào ta được
\(\left(a^3+b^3+c^3\right)-3ab=\left(a^3+b^3\right)+c^3-3ab\)
\(=\left(a^3+b^3\right)+c^3-3abc\)
\(=\left(a+b\right)^3-3ab\left(a+b\right)+c^3-3abc\)
\(=\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc\)
\(=\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2-3ab\right)\)
\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\)
1) Cho a + b - c = 0 . Chứng minh rằng : a3 + b3 - c3 = -3abc
2) Cho a - b + c = 0 . Chứng minh rằng : a3 - b3 + c3 = -3abc
Các bạn giải gấp cho mình 2 câu này nha . Mình đag cần gấp .
1 ) Ta có :
\(a+b-c=0\Leftrightarrow a+b=c\Leftrightarrow\left(a+b\right)^3=c^3\)
\(\Rightarrow a^3+b^3-c^3=a^3+b^3-\left(a+b\right)^3\)
\(\Rightarrow a^3+b^3-c^3=a^3+b^3-3a^2b-3b^2a-b^3\)
\(\Rightarrow a^3+b^3-c^3=-3a^2b-3b^2a\)
\(\Rightarrow a^3+b^3-c^3=-3ab\left(a+b\right)\)
\(\Rightarrow a^3+b^3-c^3=-3abc\left(đpcm\right)\)
2 ) Ta có :
\(a-b+c=0\Leftrightarrow c=b-a\Leftrightarrow c^3=\left(b-a\right)^3\)
\(\Rightarrow a^3-b^3+c^3=a^3-b^3+\left(b-a\right)^3\)
\(\Rightarrow a^3-b^3+c^3=a^3-b^3+b^3-3a^2b+3b^2a-a^3\)
\(\Rightarrow a^3-b^3+c^3=-3a^2b+3b^2a\)
\(\Rightarrow a^3-b^3+c^3=-3ab\left(a-b\right)\)
\(\Rightarrow a^3-b^3+c^3=3ab\left(b-a\right)\)
\(\Rightarrow a^3-b^3+c^3=3abc\left(đpcm\right)\)
1 ) Bổ sung dấu \(\Rightarrow\) thứ 2 :
\(\Rightarrow...=a^3+b^3-a^3-3a^2b-3b^2a-b^3\)
Làm lại 2) :
\(a-b+c=0\Leftrightarrow c=b-a\Leftrightarrow c^3=\left(b-a\right)^3\)
\(\Rightarrow a^3-b^3+c^3=a^3-b^3+\left(b-a\right)^3\)
\(\Rightarrow a^3-b^3+c^3=a^3-b^3+b^3-3b^2a+3ab^2-a^3\)
\(\Rightarrow a^3-b^3+c^3=-3b^2a+3ab^2\)
\(\Rightarrow a^3-b^3+c^3=-3ab\left(b-a\right)=-3abc\left(đpcm\right)\)
chứng minh hằng đẳng thức
a)(a+b+c)^3 - a^3 -b^3 - c^3 = 3(a+b)(b+c)(c+a)
b) a^3 + b^3 + c^3 - 3abc = (a+b+c)(a^2+b^2+c^2 - ab - bc - ca)
Giúp mình với nhé