Cho tam giacABC vuông tại A(AB>AC).trên AB lấy D sao cho AD=AC.Vẽ tia phân giác góc A cắt BC tại E.
a/ Tính số đo ACD
b/ Chứng minh EC=ED
c/ chứng minh AE vuông góc với CD
Cho tam giác ABC có AB < AC. Trên AC lấy điểm D sao cho AB = AD. Tia phân giác của góc A cắt BC tại E.
a. Chứng minh: tam giác ABE = tam giác ADE
b. Cho AE cắt BD tại H. Chứng minh: AE vuông góc với BD tại H.
c. Trên tia đối của tia ED lấy điểm M sao cho EM = EC. Chứng minh: A, B, M thẳng hàng và BD // MC.
(mng giải giúp em tới bài 14: Trường hợp bằng nhau thứ hai và thứ ba của tam giác ạ, cảm ơn mng nhiều)
a: Xét ΔABE và ΔADE có
AB=AD
\(\widehat{BAE}=\widehat{DAE}\)
AE chung
Do đó: ΔABE=ΔADE
b: Ta có: ΔABE=ΔADE
=>EB=ED
=>E nằm trên đường trung trực của BD(1)
Ta có: AB=AD
=>A nằm trên đường trung trực của BD(2)
Từ (1) và (2) suy ra AE là đường trung trực của BD
=>AE\(\perp\)BD tại H và H là trung điểm của BD
c: Xét ΔEBM và ΔEDC có
EB=ED
\(\widehat{BEM}=\widehat{DEC}\)(hai góc đối đỉnh)
EM=EC
Do đó: ΔEBM=ΔEDC
=>\(\widehat{EBM}=\widehat{EDC}\) và BM=DC
Ta có: \(\widehat{EBM}=\widehat{EDC}\)
\(\widehat{EDC}+\widehat{ADE}=180^0\)(hai góc kề bù)
\(\widehat{ABE}=\widehat{ADE}\)(ΔABE=ΔADE)
Do đó: \(\widehat{EBM}+\widehat{EBA}=180^0\)
=>A,B,M thẳng hàng
Ta có: AB+BM=AM
AD+DC=AC
mà AB=AD và BM=DC
nên AM=AC
=>A nằm trên đường trung trực của MC(1)
Ta có: EM=EC
=>E nằm trên đường trung trực của MC(2)
Từ (1) và (2) suy ra AE là đường trung trực của MC
=>AE\(\perp\)MC
mà AE\(\perp\)BD
nên BD//MC
Cho tam giác ABC có AB < AC. Trên AC lấy điểm D sao cho AB = AD. Tia phân giác của góc A cắt BC tại E.
a. Chứng minh: tam giác ABE = tam giác ADE
b. Cho AE cắt BD tại H. Chứng minh: AE vuông góc với BD tại H.
c. Trên tia đối của tia ED lấy điểm M sao cho EM = EC. Chứng minh: A, B, M thẳng hàng và BD // MC.
a: Xét ΔABE và ΔADE có
AB=AD
\(\widehat{BAE}=\widehat{DAE}\)
AE chung
Do đó: ΔABE=ΔADE
b: ta có: ΔABE=ΔADE
=>EB=ED
=>E nằm trên đường trung trực của BD(1)
ta có: AB=AD
=>A nằm trên đường trung trực của BD(2)
Từ (1) và (2) suy ra AE là đường trung trực của BD
=>AE\(\perp\)BD tại H và H là trung điểm của BD
c: Xét ΔBEM và ΔDEC có
EB=ED
\(\widehat{BEM}=\widehat{DEC}\)
EM=EC
Do đó: ΔBEM=ΔDEC
=>\(\widehat{EBM}=\widehat{EDC}\)
mà \(\widehat{EDC}+\widehat{ADE}=180^0\)(hai góc kề bù)
và \(\widehat{ABE}=\widehat{ADE}\)(ΔABE=ΔADE)
nên \(\widehat{ABE}+\widehat{MBE}=180^0\)
=>A,B,M thẳng hàng
Ta có: ΔEBM=ΔEDC
=>BM=DC
Xét ΔAMC có \(\dfrac{AB}{BM}=\dfrac{AD}{DC}\)
nên BD//MC
Cho tam giác ABC có tia phân giác của góc A cắt BC tại D a) chứng minh AD vuông góc với BC b Vẽ be vuông góc với AC tại E ,BE cắt AD tại I trên tia AB lấy điểm F sao cho AF = AE ,chứng minh IF vuông góc với AB c)Chứng minh c,i,f thẳng hàng
Sửa đề: ΔABC cân tại A
a:ΔABC cân tại A
mà AD là đường phân giác
nên AD là đường cao
=>AD vuông góc BC
b: Xét ΔAFI và ΔAEI có
AF=AE
góc FAI=góc EAI
AI chung
=>ΔAFI=ΔAEI
=>góc AFI=góc AEI
=>FI vuông góc AB
c: Xét ΔABC có
BE,AD là đường cao
BE cắt AD tại I
=>I là trực tâm
=>CI vuông góc AB
=>C,I,F thẳng hàng
Cho tam giác ABC vuông tại B. Tia phân giác của góc A cắt cạnh BC tại D . Trên cạnh AC lấy điểm E sao cho AE =AB. a) Chứng minh rằng rABD = rAED. b) So sánh góc BAC và góc EDC. c) Trên tia đối của tia BA lấy điểm F sao cho BF = EC. Chứng minh ba điểm E, D, F thẳng hàng.
giúp mình với
a: Xét ΔABD và ΔAED có
AB=AE
\(\widehat{BAD}=\widehat{EAD}\)
AD chung
Do đó: ΔABD=ΔAED
Cho tam giác ABC vuông tại B. Tia phân giác của góc A cắt cạnh BC tại D . Trên cạnh AC lấy điểm E sao cho AE =AB. a) Chứng minh rằng rABD = rAED. b) So sánh góc BAC và góc EDC. c) Trên tia đối của tia BA lấy điểm F sao cho BF = EC. Chứng minh ba điểm E, D, F thẳng hàng.
-giúp mình với
a: Xét ΔABD và ΔAED có
AB=AE
\(\widehat{BAD}=\widehat{EAD}\)
AD chung
Do đó: ΔABD=ΔAED
cho tam giác ABC vuông tại A (AB>AC) trên cạnh AB lấy điểm D \ AD=AC. vẽ tia phân giác của góc BAC cắt BC tại E
a) Góc ACD =?
b) CM EC=ED
c) CM AE vuông góc CD
b: Xét ΔAEC và ΔAED có
AC=AD
\(\widehat{CAE}=\widehat{DAE}\)
AE chung
Do đó: ΔAEC=ΔAED
Suy ra: EC=ED
Cho tam giác ABC vuông tại A. có AB=AC. Vẽ tia phân giác AD. Trên tia đối của các tia AD lấy điểm E sao cho AE=BC. Trên tia đối của của tia CA lấy F sao cho CF=AB.
a) Chứng minhABD = ACD
b) Chứng minh BE=BF
c) Chứng minh góc EBF là góc vuông
Cho tam giác ABC vuông tại A(AB<AC). Tia phân giác góc B cắt cạnh AC tại D, trên cạnh BC lấy điểm E sao cho AB=BE
a/ CMR;tam giác ABD= tam giác EBD, Tính số đo góc BED
b/Gọi I là giao điểm của đường thẳng ED và đường thẳng AB . Chứng minh AI=EC
c/ Vẽ AH vuông góc với BC . Chứng minh AE là tia phân giác của góc HAD
Cho tam giác ABC có AB<AC. Tia phân giác góc  cắt BC tại D. Trên tia AB lấy điểm E sao cho AE=AC
a) Chứng minh góc AED=ACD và DE=DC
b) Tia AD cắt EC tại I. Chứng minh I là trung điểm của EC và AI vuông góc EC
câu a là c/m 2 tam giác bằng nhau nhé: tg AED và tg ACD từ đó suy là các ggo1c và cạnh tương ứng bằng nhau nha!
câu b là: vì tg AEC là tg cân( AE=EC) , ad là tia phân giác mà I thuộc Ad nên Ai cũng là tia phân giác góc EAC suy ra AI là đường trung trực suy ra I là trung điểm Ec và Ai vuông góc EC