bài 1 chứng tỏ đa thức ko có nghiệm
2.(x-2)^2 +3 =0
làm 2 cách
Giúp mình với:
Bài 1 :Chứng tỏ các đa thức sau ko có nghiệm
a. x^2 + 1 c. x^2 + x + 1
b. x^2 - 4x + 5 d. x^2 - x + 1
Bài 2: Tìm mối liên hệ của a,b,c,d để x= -1 là nghiệm của đa thức:
f(x) = ax^3 + bx^2 + cx + d
Bài 3: Chứng tỏ rằng nếu a - b + c = 0 thì x= -1 là nghiệm của đa thức ;
f(x) = ax^2 + bx + c
Ngoài ra nếu a khác 0 thì x = - c/a cũng là nghiệm của đa thức f(x)
Giúp mình với:
Bài 1 :Chứng tỏ các đa thức sau ko có nghiệm
a. x^2 + 1 c. x^2 + x + 1
b. x^2 - 4x + 5 d. x^2 - x + 1
Bài 2: Tìm mối liên hệ của a,b,c,d để x= -1 là nghiệm của đa thức:
f(x) = ax^3 + bx^2 + cx + d
Bài 3: Chứng tỏ rằng nếu a - b + c = 0 thì x= -1 là nghiệm của đa thức ;
f(x) = ax^2 + bx + c
Ngoài ra nếu a khác 0 thì x = - c/a cũng là nghiệm của đa thức f(x)
Bài 1: Cho đa thức bậc nhất: f(x) = ax + b và g(x) = bx + a (a và b khác 0). Giả sử đa thức f(x) có nghiệm là x0, tìm nghiệm của đa thức g(x)
Bài 2: Chứng tỏ rằng f(x) = -8x4 + 6x3 - 4x2 + 2x - 1 không có nghiệm nguyên.
Bài 3: Cho đa thức f(x) = ax3 + bx2 + cx + d có giá trị nguyên với mọi x thuộc Z. Chứng tỏ rằng 6a và 2b là các số nguyên
Bài 1 tìm GTLN
(1-3x)(x+2)
Bài 2 Ct đa thức sau ko có nghiệm
A=x²+2x+7
Bài 3 Chứng tỏ rằng đa thức sau luôn dương vs mọi giá trị của biến
M=x²+2x+7
Bài 4 Chứng tỏ đa thức sau luôn ko dương vs mọi giá trị của biến
A=-x²+18x-81
Bài 5 Chứng tỏ các biểu thức sau luôn ko âm vs mọi giá trị của biến
F=-x²-4x-5
Bài 1.
( 1 - 3x )( x + 2 )
= 1( x + 2 ) - 3x( x + 2 )
= x + 2 - 3x2 - 6x
= -3x2 - 5x + 2
= -3( x2 + 5/3x + 25/36 ) + 49/12
= -3( x + 5/6 )2 + 49/12 ≤ 49/12 ∀ x
Đẳng thức xảy ra <=> x + 5/6 = 0 => x = -5/6
Vậy GTLN của biểu thức = 49/12 <=> x = -5/6
Bài 2.
A = x2 + 2x + 7
= ( x2 + 2x + 1 ) + 6
= ( x + 1 )2 + 6 ≥ 6 > 0 ∀ x
=> A vô nghiệm ( > 0 mà :)) )
Bài 3.
M = x2 + 2x + 7
= ( x2 + 2x + 1 ) + 6
= ( x + 1 )2 + 6 ≥ 6 > 0 ∀ x
=> đpcm
Bài 4.
A = -x2 + 18x - 81
= -( x2 - 18x + 81 )
= -( x - 9 )2 ≤ 0 ∀ x
=> đpcm
Bài 5. ( sửa thành luôn không dương nhé ;-; )
F = -x2 - 4x - 5
= -( x2 + 4x + 4 ) - 1
= -( x + 2 )2 - 1 ≤ -1 < 0 ∀ x
=> đpcm
Bài 2
Ta có A = x2 + 2x + 7 = (x2 + 2x + 1) + 6 = (x + 1)2 + 6\(\ge\)6 > 0
Đa thức A vô nghiệm
Bại 3: Ta có M = x2 + 2x + 7 = (x2 + 2x + 1) + 6 = (x + 1)2 + 6\(\ge\)6 > 0 (đpcm)
Bài 4 Ta có A = -x2 + 18x - 81 = -(x2 - 18x + 81) = -(x - 9)2 \(\le0\)(đpcm)
Bài 5 Ta có F = -x2 - 4x - 5 = -(x2 + 4x + 5) = -(x2 + 4x + 4) - 1 = -(x + 2)2 - 1 \(\le\)-1 < 0 (đpcm)
bài9: chứng tỏ các đa thức sau ko có nghiệm
b) x^2 - 5x + 31
c-x^2 - 12x - 45
d) x^2 - 4x + 26
bài4:tìm nghiệm của đa thức sau
d) x^3 - 19x^2
b.
Đặt \(f\left(x\right)=x^2-5x+51=x^2-5x+\dfrac{25}{4}+\dfrac{37}{2}=\left(x-\dfrac{5}{2}\right)^2+\dfrac{37}{2}\)
Do \(\left(x-\dfrac{5}{2}\right)^2\ge0;\forall x\Rightarrow\left(x-\dfrac{5}{2}\right)^2+\dfrac{37}{2}\ge\dfrac{37}{2}\) ;\(\forall x\)
\(\Rightarrow\) Đa thức \(f\left(x\right)\) không có nghiệm
c.
Đặt \(g\left(x\right)=-x^2-6x-45=-\left(x^2+6x+9\right)-36=-\left(x+3\right)^2-36\)
Do \(-\left(x+3\right)^2\le0;\forall x\Rightarrow-\left(x+3\right)^2-36\le-36\) ;\(\forall x\)
\(\Rightarrow\) Đa thức \(g\left(x\right)\) không có nghiệm
d.
Đặt \(h\left(x\right)=x^2-4x+26=\left(x^2-4x+4\right)+22=\left(x-2\right)^2+22\)
Do \(\left(x-2\right)^2\ge0;\forall x\Rightarrow\left(x-2\right)^2+22\ge22\) ;\(\forall x\)
\(\Rightarrow\) Đa thức \(h\left(x\right)\) không có nghiệm
4.
d. \(x^3-19x^2=0\)
\(\Leftrightarrow x^2\left(x-19\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2=0\\x-19=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=19\end{matrix}\right.\)
Vậy đa thức có 2 nghiệm là \(x=0;x=19\)
Chứng tỏ đa thức x^2-x+3 ko có nghiệm
Ta có x^2-x+3=x^2-1/2x-1/2x+1/4+11/4
= x(x-1/2)-1/2(x-1/2)+11/4
= (x-1/2)(x-1/2)+11/4
= (x-1/2)^2+11/4
Vì (x-1/2)^2 luôn lớn hơn hoặc bằng 0; 11/4 >0 nên (x-1/2)^2+11/4>0
Vậy đa thức trên vô nghiệm
Có x^2-x+3=x(x-1)+3
mà x và x-1 là 2 số nguyen liên tiếp nên luôn có tích lớn hơn hoặc =0
=>x(x-1)> hoặc =0
=>x(x-1)+3>0
=> đa thức đã cho luôn lớn hơn 0
=> x^2-x+3 vô nghiệm
*Rút kinh nghiệm lần sau khi chứng minh vô nghiẹm phải chứng minh cho đa thức đó lớn hơn hoặc nhỏ hơn 0
cách khả dụng nhất là chứng minh cho đa thức đó là tổng của các căn bậc 2 cộng với 1 số cụ thể
Bài 1. Chứng minh rằng:
a) Chứng tỏ rằng 3/2 và -1/3 là các nghiệm của đa thức P(x)=6x2 -7x- 3
b) Chứng tỏ rằng -1/2 và 3 là các nghiệm của đa thức 2x2 -5x- 3
a: 6x^2-7x-3=0
=>6x^2-9x+2x-3=0
=>(2x-3)(3x+1)=0
=>x=-1/3 hoặc x=3/2
=>ĐPCM
b: 2x^2-5x-3=0
=>2x^2-6x+x-3=0
=>(x-3)(2x+1)=0
=>x=-1/2 hoặc x=3
=>ĐPCM
chứng tỏ rằng đa thức P(x)=x^4+2*x^2 +1 ko có nghiệm
Ta có: x^4 lớn hơn hoặc bằng 0
2*x^2 lớn hơn hoặc bằng 0
=> P(x) = x^4 + 2*x^2 + 1 > 0
=> Đa thức P(x) không có nghiệm
P(x) = x4 + 2x2 + 1 = 0
P(x) = (x2 + 1)2 = 0
P(x) = x2 + 1 = 0
P(x) = x2 = -1
mà x2 \(\ge\) 0 > 1 với mọi x
Vậy đa thức vô nghiệm
P(x)=x^4+x^2*2+1
=x^4+x^2+x^2+1
=x^2(x^2+1)+x^2+1
=(x^2+1)(x^2+1)
=(x^2+1)^2>=0
Nên P(x) không có nghiệm
có ai chỉ mik bt cách làm của bài toán này ko?
tìm hệ số m của đa thức f(x)=m.x-3,biết rằng đa thức f(x) có nghiệm là 1/2
Vì đa thức f(x) có nghiệm là 1/2
=> x = 1/2
Ta có
f(x) = 0
m.x - 3 = 0
m.1/2 - 3 = 0
m. 1/2 = 3
m = 3 : 1/2
m = 6
VẬY:.................
thanks nha nhưng mik vừa nghĩ ra òi
nhưng dù sao cx cảm ơn