Với mọi giá trị của x, hãy tính giá trị của biểu thức: \(2x\left(3x-1\right)-6x\left(x+1\right)+\left(3+8x\right)\)
BT8: Tính giá trị của các biểu thức sau:
\(1,\left(2x+3\right)^2-\left(2x-1\right)^2-6x\) tại \(x=201\)
\(2,B=\left(2x+5\right)^2-4\left(x+3\right)\left(x-3\right)\)tại \(x=\dfrac{1}{20}\)
1: A=4x^2+12x+9-4x^2+4x-1-6x=10x+8
Khi x=201 thì A=10*201+8=2018
2: B=4x^2+20x+25-4x^2+12=20x+37
Khi x=1/20 thì B=1+37=38
1, \(A=\left(2x+3\right)^2-\left(2x-1\right)^2-6x\)
\(A=\left[\left(2x+3\right)+\left(2x-1\right)\right]\left[\left(2x+3\right)-\left(2x-1\right)\right]-6x\)
\(A=\left(2x+3+2x-1\right)\left(2x+3-2x+1\right)-6x\)
\(A=4\left(4x+2\right)-6x\)
\(A=16x+8-6x\)
\(A=10x+8\)
Thay \(x=201\) vào A ta có:
\(A=10\cdot201+8=2010+8=2018\)
Vậy: ....
2, \(B=\left(2x+5\right)^2-4\left(x+3\right)\left(x-3\right)\)
\(B=\left(2x+5\right)^2-4\left(x^2-9\right)\)
\(B=4x^2+20x+25-4x^2+36\)
\(B=20x+61\)
Thay \(x=\dfrac{1}{20}\) vào B ta có:
\(B=20\cdot\dfrac{1}{20}+61=1+61=62\)
Vậy: ...
Tìm giá trị nhỏ nhất của các biểu thức sau
A=\(x^2-4x+1\) \(B=4x^2+4x+11\)
\(C=\left(x-1\right)\left(x+3\right)\left(x+2\right)\left(x+6\right)\)
\(D=2x^2+y^2-2xy+2x-4y+9\)
Tìm giá trị lớn nhất của các biểu thức sau
\(E=5-8x-x^2\)
\(F=4x-x^2+1\)
Với mọi giá trị của x, hãy tính giá trị của biểu thức:
\(0,2\left(5x-1\right)-\frac{1}{2}\left(\frac{2}{3}x+4\right)+\frac{2}{3}\left(3-x\right)\)
\(1x-0,2-\frac{1}{3}x-2+2-\frac{2}{3}x\)
\(\left(1x-\frac{1}{3}x-\frac{2}{3}x\right)-\left(0,2+2-2\right)\)
=0,2
tích đúng cho mình nhé
Chứng minh giá trị biểu thức \(p=\left(x-2\right)\left(x+3\right)+\left(x+1\right)^2-2x^2-3x\) không phụ thuộc vào giá trị của biến
\(p=\left(x-2\right)\left(x+3\right)+\left(x+1\right)^2-2x^2-3x\\ =x^2-2x+3x-6+x^2+2x+1-2x^2-3x\\ =\left(x^2+x^2-2x^2\right)+\left(-2x+2x\right)+\left(3x-3x\right)+\left(-6+1\right)\\ =-5\)
Vậy biểu thức không phụ thuộc vào biến
BT2: Tính giá trị biểu thức
\(M=\left(7-2x\right)\left(4x^2+14x+49\right)-\left(64-8x^3\right)\)tại \(x=1\)
\(P=\left(2x-1\right)\left(4x^2-2x+1\right)-\left(1-2x\right)\left(1+2x+4x^2\right)\)tại \(x=10\)
\(M=\left(7-2x\right)\left(4x^2+14x+49\right)-\left(64-8x^3\right)\)
\(M=\left(7-2x\right)\left[\left(2x\right)^2+2x\cdot7+7^2\right]-\left(64-8x^3\right)\)
\(M=\left[7^3-\left(2x\right)^3\right]-\left(64-8x^3\right)\)
\(M=343-8x^3-64+8x^3\)
\(M=279\)
Vậy M có giá trị 279 với mọi x
\(P=\left(2x-1\right)\left(4x^2-2x+1\right)-\left(1-2x\right)\left(1+2x+4x^2\right)\)
\(P=8x^3-4x^2+2x-4x^2+2x-1-1+8x^3\)
\(P=16x^3-8x^2+4x-2\)
Thay \(x=10\) vào P ta có:
\(P=16\cdot10^3-8\cdot10^2+4\cdot10-2=15238\)
Vậy P có giá trị 15238 tại x=10
a: M=343-8x^3-64+8x^3=279
b: P=8x^3-4x^2+2x-4x^2+2x-1-1+8x^3
=16x^3-8x^2+4x-2
=16*10^3-8*10^2+4*10-2=15238
Bài 7.Chứng minh rằng giá trị của các biểu thức sau ko phụ thuộc vào giá trị của x:
a) \(\left(x+5\right)^2-\left(x-5\right)^2-20x+2\)
b) \(\left(x+3\right).\left(x-5\right)-\left(x-1\right)^2\)
c) \(\left(3x+2\right).\left(x-2\right)-x\left(3x-5\right)+8\)
d) \(2\left(3x+1\right).\left(2x+5\right)-6x\left(2x+4\right)-10\left(x-1\right)\)
a) \(\left(x+5\right)^2-\left(x-5\right)^2-20x+2\)
\(=x^2+10x+25-x^2+10x-25-20x+2\)
\(=2\) không phụ thuộc vào \(x\)
b) \(\left(x+3\right)\left(x-5\right)-\left(x-1\right)^2\)
\(=x^2-2x-15-x^2+2x-1\)
\(=-16\) không phụ thuộc vào \(x\)
c) \(\left(3x+2\right)\left(x-2\right)-x\left(3x-5\right)+8\)
\(=3x^2-4x-4-3x^2+5x+8\)
\(=x+8\) câu này đề sai.
d) \(2.\left(3x+1\right)\left(2x+5\right)-6x.\left(2x+4\right)-10\left(x-1\right)\)
\(=2.\left(6x^2+17x+5\right)-\left(12x^2+24x\right)-10x+10\)
\(=12x^2+34x+10-12x^2-24x-10x+10\)
\(=20\) không phụ thuộc vào \(x\)
a) ( x + 5 )2 - ( x - 5 )2 - 20x + 2
= x2 + 10x + 25 - ( x2 - 10x + 25 ) - 20x + 2
= x2 + 10x + 25 - x2 + 10x - 25 - 20x + 2
= 2 ( đpcm )
b) ( x + 3 )( x - 5 ) - ( x - 1 )2
= x2 - 2x - 15 - ( x2 - 2x + 1 )
= x2 - 2x - 15 - x2 + 2x - 1
= -16 ( đpcm )
c) ( 3x + 2 )( x - 2 ) - x( 3x - 5 ) + 8
= 3x2 - 4x - 4 - 3x2 + 5x + 8
= x + 4 ( lỗi đề )
d) 2( 3x + 1 )( 2x + 5 ) - 6x( 2x + 4 ) - 10( x - 1 )
= 2( 6x2 + 17x + 5 ) - 12x2 - 24x - 10x + 10
= 12x2 + 34x + 10 - 12x2 - 24x - 10x + 10
= 20 ( đpcm )
Bài 1 : Tìm Giá trị nhỏ nhất của các biểu thức sau
A(x)= \(2x^2\) - 8x +1
B(x)= \(\left(x-3\right)^2\) + \(\left(x-1\right)^2\)
a: \(A=2x^2-8x+1\)
\(=2\left(x^2-4x+\dfrac{1}{2}\right)\)
\(=2\left(x^2-4x+4-\dfrac{7}{2}\right)\)
\(=2\left(x-2\right)^2-7>=-7\)
Dấu = xảy ra khi x=2
b: \(B=\left(x-3\right)^2+\left(x-1\right)^2\)
\(=x^2-6x+9+x^2-2x+1\)
\(=2x^2-8x+10\)
\(=2x^2-8x+8+2\)
\(=2\left(x-2\right)^2+2>=2\)
Dấu = xảy ra khi x=2
Chứng minh rằng :
a) Giá trị của biểu thức : \(\left(\frac{x+2}{x}\right)^2:\left(\frac{x^2+4}{x^2}+\frac{4}{x+1}\left(\frac{1}{x}+1\right)\right)\)bằng 1 với mọi giá trị \(x\ne0;x\ne-2\)
b) Giá trị của biểu thức\(\left(\frac{x}{2x-6}-\frac{x^2}{x^2-9}+\frac{x}{2x-9}\left(\frac{3}{x}-\frac{1}{x-3}\right)\right):\frac{x^2-5x-6}{18-2x^2}\) bằng 1 với mọi giá trị \(x\ne0;x\ne+-3;x\ne-1;x\ne6\)
a)\(\frac{x^2+4}{x^2}+\frac{4}{x+1}\left(\frac{1}{x}+1\right)\)
\(=\frac{x^2+4}{x^2}+\frac{4}{x+1}.\frac{x+1}{x}\)
\(=\frac{x^2+4}{x^2}+\frac{4}{x}\)
\(=\frac{x^2+4x+4}{x^2}\)
\(\left(\frac{x+2}{x}\right)^2\)
=>phép chia = 1 với mọi x # 0 và x#-1
b)Cm tương tự
Ta thấy A gồm có 99 số hạng nên ta nhóm mỗi nhóm 3 số hạng.
Ta có: A = 1 + 5 + 52 + 53 + 54 + 55 +...+ 597 + 598 + 599
= (1 + 5 + 52 )+ (53 + 54 + 55 )+...+( 597 + 598 + 599 )
=(1 + 5 + 52 )+ 53(1 + 5 + 52 ) +...+ 597(1 + 5 + 52 )
= ( 1 + 5 + 52)(1 + 53+....+597)
= 31(1 + 53+....+597)
Vì có một thừa số là 31 nên A chia hết cho 31.
P/s Đừng để ý câu trả lời của mình
CMR: giá trị của biểu thức sau ko phụ thuộc vào giá trị của biến
A/ \(x\left(5x-3\right)-x^2\left(x-1\right)+x\left(x^2-6x\right)-10+3x\)
B/ \(x\left(x^2+x+1\right)-x^2\left(x+1\right)-x+5\)
A/ x(5x-3)-x^2(x-1)+x(x^2-6x)-10+3x
=> A=5x^2-3x-x^3+x^2+x^3-6x^2-10+3x
=> A=(x^3-x^3)+(5x^2+x^2-6x^2)+(3x-3x)-10
=> A= 0 + 0 + 0 -10
=> A=-10
Vậy giá trị ko phụ thuộc vào biến.
B/x(x^2+x+1)-x^2(x+1)-x+5
=> B=x^3+x^2+x-x^3-x^2-x+5
=> B= 0 +5
=> B= 5.
UNDERSTAND !!!
a/ Ta có \(x\left(5x-3\right)-x^2\left(x-1\right)+x\left(x^2-6x\right)-10+3x\)
= \(5x^2-3x-x^3+x^2+x^2\left(x-6\right)-10+3x\)
= \(5x^2-3x-x^3+x^2+x^3-6x^2-10+3x\)
= \(-10\)
Vậy giá trị của biểu thức \(x\left(5x-3\right)-x^2\left(x-1\right)+x\left(x^2-6x\right)-10+3x\)không phụ thuộc vào giá trị của biến.
b/ Ta có \(x\left(x^2+x+1\right)-x^2\left(x+1\right)-x+5\)
= \(x^3+x^2+x-x^3-x^2-x+5\)
= \(5\)
Vậy giá trị của biểu thức \(x\left(x^2+x+1\right)-x^2\left(x+1\right)-x+5\)không phụ thuộc vào giá trị của biến.