Phân tích đa thức thành nhân tử
x^2-xy+2x-2y
ax+ay-2x-2y
ax^2-3axy+bx-3by
2a^2-5by-5a^2y+2bx
Phân tích đa thức thành nhân tử :
1) x( a-b) + a - b
2) x ( a+ b ) - a - b
3 ) 10 ax - 5ay - 2x + y
4 ) \(2a^2x-5by-5a^2y+2bx\)
5 ) \(2ax^2-bx^2-2ax+bx+4a-2b\)
Giups mình vs . mai p nộp r TT
a, x(a - b) + (a - b)
= (x + 1)(a - b)
b, x(a + b) - a - b
= x(a + b) - (a + b)
= (x - 1)(a + b)
c, 10ax - 5ay - 2x + y
= 5a(2x - y) - (2x - y)
= (5a - 1)(2x - y)
d, 2a^2x - 5by - 5a^2y + 2bx
= 2x(a^2 + b) - 5y(b + a^2)
= (2a - 5y)(a^2 + b)
làm tiếp:
2ax2 - bx2 - 2ax +bx +4a-2b
= x2(2a-b) - x(2a-b) +2(2a-b)
=(2a-b)(x2-x+2)
1)\(x\left(a-b\right)+a-b=x\left(a-b\right)+\left(a-b\right)=\left(a-b\right)\left(a+x\right)\)
2)\(x\left(a+b\right)-a-b=x\left(a+b\right)-\left(a+b\right)=\left(a+b\right)\left(x-1\right)\)
3)\(10ax-5ay-2x+y=\left(10ax-5ay\right)-\left(2x-y\right)=5a\left(2x-y\right)-\left(2x-y\right)=\left(2x-y\right)\left(5a-1\right)\)
4)\(2a^2x-5by-5a^2y+2bx=\left(2a^2x-5a^2y\right)+\left(2bx-5by\right)=a^2\left(2x-5y\right)+b\left(2x-5y\right)=\left(2x-5y\right)\left(a^2+b\right)\)5)\(2ax^2-bx^2-2ax+bx+4a-2b=\left(2ax^2-bx^2\right)-\left(2ax-bx\right)+\left(4a-2b\right)=x^2\left(2a-b\right)-x\left(2a-b\right)+2\left(2a-b\right)\)\(=\left(2a-b\right)\left(x^2-x+2\right)\)
Phân tích đa thức thành nhân tử
x^2-2xy+y^2-2x+2y
x^2-4x+4-x^2y+2xy
ax^2-3axy-x^2+6xy-9y^2
2a^2x-5a^2y-4x^2+30xy-25y^2
a) Ta có: \(x^2-2xy+y^2-2x+2y\)
\(=\left(x-y\right)^2-2\left(x-y\right)\)
\(=\left(x-y\right)\left(x-y-2\right)\)
b) Ta có: \(x^2-4x+4-x^2y+2xy\)
\(=\left(x-2\right)^2-xy\left(x-2\right)\)
\(=\left(x-2\right)\left(x-2-xy\right)\)
c) Ta có: \(ax^2-3axy-x^2+6xy-9y^2\)
\(=ax\left(x-3y\right)-\left(x^2-6xy+9y^2\right)\)
\(=ax\left(x-3y\right)-\left(x-3y\right)^2\)
\(=\left(x-3y\right)\left(ax-x+3y\right)\)
d) Ta có: \(2a^2x-5a^2y-4x^2+30xy-25y^2\)
\(=a^2\left(2x-5y\right)-\left(4x^2-30xy+25y^2\right)\)
\(=a^2\left(2x-5y\right)-\left(2x-5y\right)^2\)
\(=\left(2x-5y\right)\left(a^2-2x+5y\right)\)
Phân tích đa thức thành nhân tử
a^2-b^2-5a+5b
a^2-b^2-3ab^2-3a^2b
x^2-xy+2y-4
4a^2-10ax+15x-9
a) Ta có: \(a^2-b^2-5a+5b\)
\(=\left(a-b\right)\left(a+b\right)-5\left(a-b\right)\)
\(=\left(a-b\right)\left(a+b-5\right)\)
b) Ta có: \(a^2-b^2-3ab^2-3a^2b\)
\(=\left(a-b\right)\left(a+b\right)-3ab\left(a+b\right)\)
\(=\left(a+b\right)\left(a-b-3ab\right)\)
c) Ta có: \(x^2-xy+2y-4\)
\(=\left(x^2-4\right)-\left(xy-2y\right)\)
\(=\left(x-2\right)\left(x+2\right)-y\left(x-2\right)\)
\(=\left(x-2\right)\left(x+2-y\right)\)
d) Ta có: \(4a^2-10ax+15x-9\)
\(=\left(4a^2-9\right)-\left(10ax-15x\right)\)
\(=\left(2a-3\right)\left(2a+3\right)-5x\left(2a-3\right)\)
\(=\left(2a-3\right)\left(2a+3-5x\right)\)
phân tích các đa thức sau thành nhân tử
xy +1 -x -y
y +z -1 -yz
ax +ay -bx -by
ax -ay -bx +by
2x^2 -4xy +2y^2 -32
5x^2 -5y^2 -x +y
x^2 +6x +8
x^2 -9x +8
Phân tích đa thức sau bằng phương pháp nhóm hạng tử
1) x ( a - b ) + a - b ; 2) x - y - a( x - y ) ; 3) a( x + y ) - x - y ; 4) x( a - b ) - a + b ; 5) x\(^2\) + xy - 2x - 2y
6) 10ax - 5ay + 2x - y ; 7) 2a\(^{^2}\) x - 5by - 5a\(^2\) y + 2bx ; 8) 2ax\(^2\)- bx\(^2\) - 2ax + bx + 4a - 2b ; 9) 2ax - bx + 3cx - 2a + b - 3c
10) ax - bx - 2cx - 2a + 2b + 4c
1, x(a-b)+a-b 2, x-y-a(x-y) 3, a(x+y)-x-y 4, x(a-b)-a+b 5, x2+xy-2x-2y 6, 10ax-5ay+2x-y
= x(a-b)+(a-b) =(x-y)-a(x-y) =a(x+y)-(x+y) =x(a-b)-(a-b) =(x2+xy)-(2x+2y) =(10ax+2x)-(5ay+y)
=(a-b)(x+1) =(x-y)(1-a) =(x+y)(a-1) =(a-b)(x-1) =x(x+y)-2(x+y) =2x(5a+1)-y(5a+1)
=(x+y)(x-2) =(5a+1)(2x-y)
7, 2a2x-5by-5a2y+2bx 8, 2ax2-bx2-2ax+bx+4a-2b 9, 2ax-bx+3cx-2a+b-3c 10, ax-bx-2cx-2a+2b+4c
=(2a2x+2bx)-(5by+5a2y) =(2ax2-bx2)-(2ax-bx)+(4a-2b) =(2ax-2a)-(bx-b)+(3cx-3c) =(ax-2a)-(bx-2b)-(2cx-4c)
=2x(a2+b)-5y(b+a2) =x2(2a-b)-x(2a-b)+2(2a-b) =2a(x-1)-b(x-1)+3c(x-1) =a(x-2)-b(x-2)-2c(x-2)
=(a2+b)(2x-5y) =(2a-b)(x2-x+2) =(x-1)(2a-b+3c) =(x-2)(a-b-2c)
Phân tích các đa thức sau thành nhân tử:
a,4x+by+4y+bx
b,2x^2+xy-2x-y
c,3ax-2bx-6ay+4by
d,ma-mb+na-nb-pa+pb
a, (4x+4y)+(by+bx)= 4(x+y)+b(x+y)=(x+y)(4+b)
b, ( 2x2+xy)-(2x+y)= x(2x+y)-(2x+y)=(2x+y)(x-1)
c, (3ax-2bx)-(6ay-4by)= x(3a-2b)-2y(3a-2b)=(3a-2b)(x-2y)
d, (ma+na-pa)-(mb+nb-pb)= a(m+n+p)-b(m+n-p)=(m+n+p)(a-b)
a) 4x+bx+by+4y b)2x2+xy-2x-y c)3ax-2bx-6ay+4by d)ma-mb+na-nb-pa+pb
=x(4+b)+y(b+4) =2x(x-1)+y(x-1) =3ax-6ay-2bx+4by =m(a-b)+n(a-b)-p(a-b)
=(x+y)(b+4) =(x-1)(2x+1) =3a(x-2y)-2b(x-2y)=(3a-2b)(x-2y) =(a-b)(m+n-p)
phân tích đa thức thành nhân tử
x2-4xy+4y2-2x+4y-35
x2-(a+b)xy+aby2
(xy+ab)2+(ay-bx)2
a: \(x^2-4xy+4y^2-2x+4y-35\)
\(=\left(x^2-4xy+4y^2\right)-\left(2x-4y\right)-35\)
\(=\left(x-2y\right)^2-2\left(x-2y\right)-35\)
\(=\left(x-2y\right)^2-7\left(x-2y\right)+5\left(x-2y\right)-35\)
\(=\left(x-2y\right)\left(x-2y-7\right)+5\left(x-2y-7\right)\)
\(=\left(x-2y-7\right)\left(x-2y+5\right)\)
c: \(\left(xy+ab\right)^2+\left(ay-bx\right)^2\)
\(=x^2y^2+a^2b^2+2xyab+a^2y^2-2aybx+b^2x^2\)
\(=x^2y^2+a^2y^2+a^2b^2+b^2x^2\)
\(=y^2\left(x^2+a^2\right)+b^2\left(a^2+x^2\right)\)
\(=\left(x^2+a^2\right)\left(y^2+b^2\right)\)
Phân tích đa thức thành nhân tử : x^2-xy-2x+2y
phân tích đa thức thành nhân tử :
x^2+xy-2x-2y
\(=x\left(x+y\right)-2\left(x+y\right)=\left(x+y\right)\left(x-2\right)\)
\(x^2+xy-2x-2y=x\left(x+y\right)-2\left(x+y\right)=\left(x+y\right)\left(x-2\right)\)