phân tích đa thức thành nhân tử bằng phương pháp tách 4x2+x+7
Phân tích đa thức thành nhân tử bằng phương pháp tách đuôi
x8 + x7 + 1
\(x^8+x^7+1\)
\(=\left(x^8-x^6+x^5-x^3+x^2\right)\)
\(+\left(x^7-x^5+x^4-x^2+x\right)\)
\(+\left(x^6-x^4+x^3-x+1\right)\)
\(=x^2\left(x^6-x^4+x^3-x+1\right)\)
\(+x\left(x^6-x^4+x^3-x+1\right)\)
\(+\left(x^6-x^4+x^3-x+1\right)\)
\(=\left(x^2+x+1\right)\left(x^6-x^4+x^3-x+1\right)\)
Phân tích đa thức thành nhân tử bằng phương pháp tách hoặc thêm bớt hạng tử: x^3 - 3x^2 - 4
phân tích đa thức thành nhân tử bằng phương pháp tách hạng tử
\(x^3+3x^2-4\)
\(x^3+3x^2-4\)
\(=\left(x^3+4x^2\right)-\left(x^2+4\right)\)
\(=\left(x^2+4\right)\left(x-1\right)\)
Mình nhìn nhầm đề
\(x^3+3x^2-4\)
\(=\left(x^3+2x^2\right)+\left(x^2-4\right)\)
\(=x^2\left(x+2\right)+\left(x-2\right)\left(x+2\right)\)
\(=\left(x+2\right)\left(x^2+x-2\right)\)
\(=\left(x+2\right)\left[\left(x^2+x\right)-\left(2x+2\right)\right]\)
\(=\left(x+2\right)\left(x+2\right)\left(x-1\right)\)
\(=\left(x+2\right)^2\left(x-1\right)\)
phân tích đa thức thành nhân tử bằng phương pháp nhóm hạng tử
x3-4x2+8x-8
giúp mình với,mình cần gấp
bài 1: Phân tích đa thức sau thành nhân tử ( làm bằng 2 cách: nhóm các hạng tử, tách hạng tử )
a,4x2 - x - 5
b,x2 - 2x - 15
a: \(4x^2-x-5=\left(4x-5\right)\left(x+1\right)\)
b: \(x^2-2x-15=\left(x-5\right)\left(x+3\right)\)
Phân tích đa thức thành nhân tử:
a) 8x2 - 2x - 1 (bằng phương pháp tách hạng tử)
b) x2 - y2 + 10x - 6y + 16 (bằng phương pháp tách hạng tử)
a) 8x2 - 2x - 1
=8x2+2x-4x-1
=2x.(4x+1)-(4x+1)
=(4x+1)(2x-1)
b) x2 - y2 + 10x - 6y + 16
=x2+10x+25-y2-6y-9
=(x+5)2-(y+3)2
=(x+5-y-3)(x+5+y+3)
=(x-y+2)(x+y+8)
Phân tích đa thức thành nhân tử bằng phối hợp nhiều phương pháp
a) x4-4x2-4x-1
b) 10x4y2-10x3y2-10x2y2+10xy2
a) \(x^4-4x^2-4x-1=\left(x^4-1\right)-4x\left(x+1\right)=\left(x^2+1\right)\left(x-1\right)\left(x+1\right)-4x\left(x+1\right)=\left(x+1\right)\left[\left(x^2+1\right)\left(x-1\right)-4x\right]=\left(x+1\right)\left(x^3-x^2+x-1-4x\right)=\left(x+1\right)\left(x^3-x^2-3x-1\right)\)
b) \(10x^4y^2-10x^3y^2-10x^2y^2+10xy^2=10xy^2\left(x^3-x^2-x+1\right)=10xy^2\left(x-1\right)^2\left(x+1\right)\)
a: \(x^4-4x^2-4x-1\)
\(=\left(x^4-1\right)-4x\left(x+1\right)\)
\(=\left(x-1\right)\left(x+1\right)\left(x^2+1\right)-4x\left(x+1\right)\)
\(=\left(x+1\right)\left(x^3+x-x^2-1-4x\right)\)
\(=\left(x+1\right)\left(x^3-x^2-3x-1\right)\)
b: \(10x^4y^2-10x^3y^2-10x^2y^2+10xy^2\)
\(=10xy^2\left(x^3-x^2-x+1\right)\)
\(=10xy^2\cdot\left[\left(x+1\right)\left(x^2-x+1\right)-x\left(x+1\right)\right]\)
\(=10xy^2\cdot\left(x+1\right)\left(x-1\right)^2\)
Phân tích đa thức thành nhân tử bằng phương pháp tách hạng tử tự do: 3x^2 - 8x + 4
3x^2 - 8x + 4
= 3x^2 - 6x - 2x + 4
=( 3x^2 - 6x ) - ( 2x - 4)
=3x(x-2) - 2(x-2)
=(3x-2) - (x-2)
Phân tích đa thức thành nhân tử:(phương pháp tách hạng tử)
x^2-2x-48
\(x^2+6x-8x-48=\left(x^2+6x\right)-\left(8x+48\right)\)
\(=x\left(x+6\right)-8\left(x+6\right)=\left(x+6\right)\left(x-8\right)\)
Theo bài ra , ta có :
\(x^2-2x+1-49\)
\(=\left(x-1\right)^2-7^2\)
\(=\left(x-1-7\right)\left(x-1+7\right)\)