Tìm x,y biết x/2=y/4 và x^4.y^4=16
Tìm x y biết x/2=y/9 và x^4.y^4=16
\(x^4\cdot y^4=16\Leftrightarrow\left(xy\right)^4=16\Leftrightarrow xy=2\) (1)
có: \(\frac{x}{2}=\frac{y}{9}\Leftrightarrow x=\frac{2y}{9}\)
thay vào (1) đc:
\(x\cdot y=\frac{2y}{9}\cdot y=\frac{2y^2}{9}=2\)
\(\Rightarrow2y^2=18\Leftrightarrow y^2=9\Leftrightarrow y=3\)và \(y=-3\)
y = 3 <=> x = 2*3/9 = 2/3
y = -3 <=> x = 2*(-3)/9=-2/3
vậy x = 2/3, y = 3
x = -2/3, y = -3
Cho hai số x;y ( 0 > x > y ) .Biết x/2 = y/4 và x^4 . y^4 =16 . Tìm hai số x và y đó
tìm x ,y,z biết :
x/4 =y/3;y/4=z/5 và x^2 -y^2=-16
tìm x,y,z biết x/2=y/3 , y/4=z/5 và x^2-y^-16
tìm x,y biết : x/3 = y/4 và x^2+y^2=16
\(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x^2+y^2}{3^2+4^2}=\frac{16}{25}\)
chỉ bt tek -_-
Tìm x,y bít x/3=y/5 và x+y=16
Tìm x,y,z biết :x/2=y/3,y/4=z/5 và x+y-z=10
x/3=y/5=x+y/3+5=16/8=2
x/3=2 suy ra x=6
y/5=2 suy ra y=10
x/2=y/3suy ra x/8=y/12
y/4=z/5 suy ra y/12=z/15
x/8=y/12=z/15=x+y-z/8+12-15=10/5=2
x/8=2 suy ra x=16
y/12=2 suy ra y=24
x/15=2 suy ra z=30
a,Tìm x,y,z biết/: \(\dfrac{x}{2}=\dfrac{y}{3};\dfrac{y}{4}=\dfrac{z}{5}\) và \(x^2-y^2=-16\)
b, Tìm x biết: \(\left|2x+3\right|=x+2\)
a) \(\dfrac{x}{2}=\dfrac{y}{3}\Rightarrow\dfrac{x^2}{4}=\dfrac{y^2}{9}=\dfrac{x^2-y^2}{4-9}=\dfrac{-16}{-5}=\dfrac{16}{5}\)
\(\Rightarrow\left\{{}\begin{matrix}x^2=4.\dfrac{16}{5}\\y^2=9.\dfrac{16}{5}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=\pm\left(2.\dfrac{4}{\sqrt[]{5}}\right)=\pm\dfrac{8\sqrt[]{5}}{5}\\y=\pm\left(3.\dfrac{4}{\sqrt[]{5}}\right)=\pm\dfrac{12\sqrt[]{5}}{5}\end{matrix}\right.\)
\(\dfrac{y}{4}=\dfrac{z}{5}\Rightarrow z=\dfrac{5}{4}y=\dfrac{5}{4}.\left(\pm\dfrac{12\sqrt[]{5}}{5}\right)=\pm3\sqrt[]{5}\)
b) \(\left|2x+3\right|=x+2\)
\(\Rightarrow\left[{}\begin{matrix}2x+3=x+2\\2x+3=-x-2\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=-1\\3x=-5\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=-1\\3x=-\dfrac{5}{3}\end{matrix}\right.\)
Đính chính
Dòng cuối \(3x=-\dfrac{5}{3}\rightarrow x=-\dfrac{5}{3}\)
Tìm x, y biết:
\(\frac{x}{2}=\frac{y}{4}\)và x4 . y4 = 16
\(\frac{x}{2}=\frac{y}{4}=k\)
=> \(x=2k;\)\(y=4k\)
Theo bài ra ta có:
\(x^4.y^4=16\)
<=> \(\left(2k\right)^4.\left(4k\right)^4=16\)
<=> \(4096.k^8=16\)
<=> \(k^8=\frac{1}{256}\)
<=> \(k=\pm\frac{1}{2}\)
làm nốt phần còn lại
x/2=y/4
=> 2y=4x
<=> y=2x
thay vào , ta có
x4 .(2x)4 =16
<=> 16x8=16
<=> x8 =1
=> x= 1 hoặc x=-1
thay vào ta có 2 cặp (x,y) là ( 1,2) và (-1,-2)
tìm x,y biết :
\(\frac{x}{2}=\frac{y}{4}\) và x4 . y4 = 16
\(\Rightarrow\frac{x^8}{256}=\frac{y^8}{65536}=\frac{x^4.y^4}{4096}=\frac{16}{4096}=\frac{1}{256}\)
\(\Rightarrow\left[\begin{array}{nghiempt}x=1\\x=-1\end{array}\right.\)
\(\Rightarrow\left[\begin{array}{nghiempt}y=2\\y=-2\end{array}\right.\)
Mà 2 và 4 cùng dấu
=> x; y cùng dấu
\(\Rightarrow\left(x;y\right)\in\left\{\left(1;2\right);\left(-1;-2\right)\right\}\)
=>\(\frac{x}{2}=\frac{y}{4}=>\frac{x^4}{16}=\frac{y^4}{256}=\frac{x^4.y^4}{16.256}=\frac{16}{4096}=\frac{1}{256}\)
=>\(\begin{cases}x=1\\x=-1\end{cases}\)
=>\(\begin{cases}y=2\\y=-2\end{cases}\)
vậy:
\(x=1;y=2\)
\(x=-1;y=-2\)
\(\frac{x}{2}=\frac{y}{4}\) => \(\frac{x^4}{2^4}=\frac{y^4}{4^4}=\left(\frac{x}{2}\right)^4=\left(\frac{y}{4}\right)^4\)
Đặt: \(\left(\frac{x}{2}\right)^4=\left(\frac{y}{4}\right)^4=k\)
=> \(x^4=k.2^4\)
\(y^4=k.4^4\)
\(\left(xy\right)^4=8^4.k^2=4096.k^2=16\) => \(k^2=\frac{1}{256}\)
=> \(k=\frac{\sqrt{1}}{\sqrt{256}}=\frac{1}{16}\)
=> \(x=\sqrt[4]{\frac{1}{16}.2^4}=1\)
\(y=\sqrt[4]{\frac{1}{16}.4^4}=2\)