a) ( 1-\(\frac{1}{2}\)) x ( 1-\(\frac{1}{3}\)) x ( 1- \(\frac{1}{4}\)) x ( 1-\(\frac{1}{5}\)) x .... x ( 1-\(\frac{1}{2014}\)) x ( 1- \(\frac{1}{2015}\)).
Tìm x biết
a) \(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{47.49}=\frac{24}{x+1}\)
b) \(\frac{4}{1.5}+\frac{4}{5.9}+\frac{4}{9.13}+...+\frac{4}{97.101}=\frac{2x+4}{101}\)
c) \(\frac{x-1}{2017}+\frac{x-2}{2016}=\frac{x-3}{2015}+\frac{x-4}{2014}\)
d) \(\frac{x+1}{2017}+\frac{x+2}{2016}=\frac{x+3}{2015}+\frac{x+4}{2014}\)
\(b)\) \(\frac{4}{1.5}+\frac{4}{5.9}+\frac{4}{9.13}+...+\frac{4}{97.101}=\frac{2x+4}{101}\)
\(\Leftrightarrow\)\(\frac{1}{1}-\frac{1}{5}+\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+...+\frac{1}{97}-\frac{1}{101}=\frac{2x+4}{101}\)
\(\Leftrightarrow\)\(1-\frac{1}{101}=\frac{2x+4}{101}\)
\(\Leftrightarrow\)\(\frac{100}{101}=\frac{2x+4}{101}\)
\(\Leftrightarrow\)\(100=2x+4\)
\(\Leftrightarrow\)\(2x=96\)
\(\Leftrightarrow\)\(48\)
Vậy \(x=48\)
Chúc bạn học tốt ~
\(a)\) \(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{47.49}=\frac{24}{x+1}\)
\(\Leftrightarrow\)\(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{47.49}=\frac{48}{x+1}\)
\(\Leftrightarrow\)\(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{47}-\frac{1}{49}=\frac{48}{x+1}\)
\(\Leftrightarrow\)\(1-\frac{1}{49}=\frac{48}{x+1}\)
\(\Leftrightarrow\)\(\frac{48}{49}=\frac{48}{x+1}\)
\(\Leftrightarrow\)\(49=x+1\)
\(\Leftrightarrow\)\(x=48\)
Vậy \(x=48\)
Chúc bạn học tốt ~
a ) S = \(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+........+\frac{1}{2013}-\frac{1}{2014}+\frac{1}{2015}\) và P = \(\frac{1}{1008}\) + \(\frac{1}{1009}+\frac{1}{1010}+........+\frac{1}{2014}+\frac{1}{2015}\)
Tính (S-P)^2016.
b, Tìm x,y biết : |x - 5 | + |1- x | = \(\frac{12}{\left|y+1\right|+3}\)
c, Tìm số tự nhiên x thoả mãn : \(3^x+4^x=5^x\)
Giải phương trình
a,\(\frac{x+5}{x-1}=\frac{x+1}{x-3}-\frac{8}{x^2-4x+3}\)
b, \(\frac{x}{2012}+\frac{x+1}{2013}+\frac{x+2}{2014}+\frac{x+3}{2015}+\frac{x+4}{2016}=5\)
a, \(\frac{x+5}{x-1}=\frac{x+1}{x-3}-\frac{8}{x^2-4x+3}\)
= \(\frac{\left(x+5\right)\left(x-3\right)}{\left(x-1\right)\left(x-3\right)}=\frac{x^2-1}{\left(x-1\right)\left(x-3\right)}-\frac{8}{\left(x-1\right)\left(x-3\right)}\)
( x + 5)(x - 3) = \(x^2-1\) - 8
x\(^2\) -3x + 5x -15 = \(x^2-9\)
= > \(x^2-x^2\) +2x = 15 - 9
=> 2x = 6
=> x = 3
1) (8x-5)(x2+2014)=0
2) \(\frac{2-x}{2015}-1=\frac{1-x}{2016}\)\(-\frac{x}{2017}\)
3) \(\frac{x-1}{2016}+\frac{x-2}{2015}=\frac{x-3}{2014}\)\(+\frac{x-4}{2013}\)
4) (2x-5)3-(3x-4)3+(x+1)3=0
Bài 3 :
\(\frac{x-1}{2016}+\frac{x-2}{2015}=\frac{x-3}{2014}+\frac{x-4}{2013}\)
\(\Leftrightarrow\)\(\left(\frac{x-1}{2016}-1\right)+\left(\frac{x-2}{2015}-1\right)=\left(\frac{x-3}{2014}-1\right)+\left(\frac{x-4}{2013}-1\right)\)
\(\Leftrightarrow\)\(\frac{x-1-2016}{2016}+\frac{x-2-2015}{2015}=\frac{x-3-2014}{2014}+\frac{x-4-2013}{2013}\)
\(\Leftrightarrow\)\(\frac{x-2017}{2016}+\frac{x-2017}{2015}=\frac{x-2017}{2014}+\frac{x-2017}{2013}\)
\(\Leftrightarrow\)\(\frac{x-2017}{2016}+\frac{x-2017}{2015}-\frac{x-2017}{2014}-\frac{x-2017}{2013}=0\)
\(\Leftrightarrow\)\(\left(x-2017\right)\left(\frac{1}{2016}+\frac{1}{2015}-\frac{1}{2014}-\frac{1}{2013}\right)=0\)
Vì \(\frac{1}{2016}+\frac{1}{2015}-\frac{1}{2014}-\frac{1}{2013}\ne0\)
Nên \(x-2017=0\)
\(\Rightarrow\)\(x=2017\)
Vậy \(x=2017\)
Chúc bạn học tốt ~
Bài 1 :
\(\left(8x-5\right)\left(x^2+2014\right)=0\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}8x-5=0\\x^2+2014=0\end{cases}\Leftrightarrow\orbr{\begin{cases}8x=0+5\\x^2=0-2014\end{cases}}}\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}8x=5\\x^2=-2014\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{5}{8}\\x=\sqrt{-2014}\left(loai\right)\end{cases}}}\)
Vậy \(x=\frac{5}{8}\)
Chúc bạn học tốt ~
Bài 2 :
\(\frac{2-x}{2015}-1=\frac{1-x}{2016}-\frac{x}{2017}\)
\(\Leftrightarrow\)\(\frac{2-x}{2015}+1=\left(\frac{1-x}{2016}+1\right)-\left(\frac{x}{2017}-1\right)\) ( cộng 2 vế cho 2 )
\(\Leftrightarrow\)\(\frac{2-x+2015}{2015}=\frac{1-x+2016}{2016}-\frac{x-2017}{2017}\)
\(\Leftrightarrow\)\(\frac{2017-x}{2015}=\frac{2017-x}{2016}+\frac{2017-x}{2017}\)
\(\Leftrightarrow\)\(\frac{2017-x}{2015}-\frac{2017-x}{2016}-\frac{2017-x}{2017}=0\)
\(\Leftrightarrow\)\(\left(2017-x\right)\left(\frac{1}{2015}-\frac{1}{2016}-\frac{1}{2017}\right)=0\)
Vì \(\frac{1}{2015}-\frac{1}{2016}-\frac{1}{2017}\ne0\)
Nên \(2017-x=0\)
\(\Rightarrow\)\(x=2017\)
Vậy \(x=2017\)
Chúc bạn học tốt ~
Tìm x thuộc Q biết
a) \(\frac{x+1}{10}+\frac{x+1}{11}+\frac{x+1}{12}+\frac{x+1}{13}+\frac{x+1}{14}\)
b) \(\frac{x+4}{2012}+\frac{x+3}{2013}+\frac{x+4}{2014}+\frac{x+5}{2015}\)
bài 1)trung bình cộng các giá trị x thỏa mãn 4(x-1)^2=x^2
bài 2)\(\frac{2014+\frac{2013}{2}+\frac{2012}{3}+.............+\frac{2}{2013}+\frac{1}{2014}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+..............+\frac{1}{2014}+\frac{1}{2015}}\)
2) xét tử ta có
2014+2013/2+2012/3+...+2/2013+1/2014
=(1+2013/2)+(1+2012/3)+...+(1+2/2013)+(1+1/2014)+1
=2015/2+2015/3+...+2015/2013+2015/2014+2015/2015
=2015(1/2+1/3+...+1/2013+1/2014+1/2015) (1)
mà mẫu bằng 1/2+1/3+1/4+...+1/2014+1/2015 (2)
từ (1),(2)=> phân thức trên =2015
a. \(\frac{x+1}{10}+\frac{x+1}{11}+\frac{x+1}{12}=\frac{x+1}{13}+\frac{x+1}{14}\)
b. \(\frac{x+4}{2012}+\frac{x+3}{2013}=\frac{x+2}{2014}+\frac{x+1}{2015}\)
a) x=-1
b) x=-2016
k mik nhé, ủng hộ nha:)
Bài 1 : Thực hiện phép tính
(1) D = \(1+\frac{1}{2}\left(1+2\right)+\frac{1}{3}\left(1+2+3\right)+...+\frac{1}{16}\left(1+2+...+16\right)\)
(2) M =\(\frac{\frac{1}{99}+\frac{2}{98}+\frac{3}{97}+...+\frac{99}{1}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}}\)
Bài 2 : Tìm x biết
(1) \(x-\left\{x-\left[x-\left(-x+1\right)\right]\right\}=1\)
(2) \(\left[\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2016}\right]\cdot x=\frac{2015}{1}+\frac{2014}{2}+...+\frac{1}{2015}\)
(3) \(\frac{x}{\left(a+5\right)\left(4-a\right)}=\frac{1}{a+5}+\frac{1}{4-a}\)
(4) \(\frac{x+2}{11}+\frac{x+2}{12}+\frac{x+2}{13}=\frac{x+2}{14}+\frac{x+2}{15}\)
(5) \(\frac{x+1}{2015}+\frac{x+2}{2014}+\frac{x+3}{2013}+\frac{x+4}{2012}+4=0\)
Bài 3 :
(1) Cho : A =\(\frac{9}{1}+\frac{8}{2}+\frac{7}{3}+...+\frac{1}{9}\); B =\(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{10}\)
CMR : \(\frac{A}{B}\)Là 1 số nguyên
(2) Cho : D =\(\frac{1}{1001}+\frac{1}{1002}+\frac{1}{1003}+...+\frac{1}{2000}\)CMR : \(D< \frac{3}{4}\)
Bài 4 : Ký hiệu [x] là số nguyên lớn nhất không vượt quá x , gọi là phần nguyên của x.
VD : [1.5] =1 ; [3] =3 ; [-3.5] = -4
(1) Tính :\(\left[\frac{100}{3}\right]+\left[\frac{100}{3^2}\right]+\left[\frac{100}{3^3}\right]+\left[\frac{100}{3^4}\right]\)
(2) So sánh : A =\(\left[X\right]+\left[X+\frac{1}{5}\right]+\left[X+\frac{2}{5}\right]+\left[X+\frac{3}{5}\right]+\left[X+\frac{4}{5}\right]\)và B = [5x]. Biết x=3.7
a)|3x-5|=(-2)2 \(b.\frac{x+1}{10}+\frac{x+1}{11}+\frac{x+1}{12}=\frac{x+1}{13}+\frac{x+1}{14}\)
\(c.\frac{x+4}{2014}+\frac{x+3}{2015}=\frac{x+2}{2016}+\frac{x+1}{2017}\)
giải phương trình:
a)\(\frac{x+1}{9}+\frac{x+2}{8}=\frac{x+3}{7}+\frac{x+4}{6}\)
b)\(\frac{x}{2012}+\frac{x+1}{2013}+\frac{x+2}{2014}+\frac{x+3}{2015}+\frac{x+4}{2016}=5\)
a) \(\frac{x+1}{9}+\frac{x+2}{8}=\frac{x+3}{7}+\frac{x+4}{6}\)
\(\Rightarrow\frac{x+1}{9}+1+\frac{x+2}{8}+1=\frac{x+3}{7}+1+\frac{x+4}{6}+1\)
\(\Rightarrow\frac{x+10}{9}+\frac{x+10}{8}=\frac{x+10}{7}+\frac{x+10}{6}\)
\(\Rightarrow\frac{x+10}{9}+\frac{x+10}{8}-\frac{x+10}{7}-\frac{x+10}{6}=0\)
\(\Rightarrow\left(x+10\right)\left(\frac{1}{9}+\frac{1}{8}-\frac{1}{7}-\frac{1}{6}\right)=0\)
Mà \(\left(\frac{1}{9}< \frac{1}{8}< \frac{1}{7}< \frac{1}{6}\right)\)nên \(\left(\frac{1}{9}+\frac{1}{8}-\frac{1}{7}-\frac{1}{6}\right)< 0\)
\(\Rightarrow x+10=0\Rightarrow x=-10\)
Vậy x = -10
b) \(\frac{x}{2012}+\frac{x+1}{2013}+\frac{x+2}{2014}+\frac{x+3}{2015}+\frac{x+4}{2016}=5\)
\(\Rightarrow\frac{x}{2012}-1+\frac{x+1}{2013}-1+\frac{x+2}{2014}-1\)
\(+\frac{x+3}{2015}-1+\frac{x+4}{2016}-1=0\)
\(\Rightarrow\frac{x-2012}{2012}+\frac{x-2012}{2013}+\frac{x-2012}{2014}\)\(+\frac{x-2012}{2015}+\frac{x-2012}{2016}=0\)
\(\Rightarrow\left(x-2012\right)\left(\frac{1}{2012}+\frac{1}{2013}+\frac{1}{2014}+\frac{1}{2015}+\frac{1}{2016}\right)=0\)
Mà \(\left(\frac{1}{2012}+\frac{1}{2013}+\frac{1}{2014}+\frac{1}{2015}+\frac{1}{2016}\right)>0\)nên x - 2012 = 0
Vậy x = 2012
a, (x+1)/9 +1 + (x+2)/8 = (x+3)/7 + 1 + (x+4)/6 + 1
<=> (x+10)/9 +(x+10)/8 = (x+10)/7 + (x+10)/6
<=> (x+10). (1/9 +1/8 - 1/7 -1/6) =0
vì 1/9 +1/8 -1/7 - 1/6 khác 0
=> x+10=0
=> x=-10