Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
thi hue nguyen
Xem chi tiết
tam mai
20 tháng 7 2019 lúc 8:42

a) [ a^2+b^2+c^2-2ab-2bc+2ac]--(b^2-2bc+c^2)+2ab-2ac

=a^2+b^2+c^2-2ab-2bc+2ac-b^2+2bc-c^2+2ab+2ac

=a^2

tam mai
20 tháng 7 2019 lúc 8:47

b) (x^3-6x^2+12x-8)-x(x^2-1)+6x^2-18x

=x^3-6x^2+12x-8-x^3+x+6x^2-18x

= -5x-8

tam mai
20 tháng 7 2019 lúc 8:55

c) [ x^3-2x^2+4x-2x^2+4x-8] - [x^3+2x^2+4x+2x^2+4x+8]

=x^3-2x^2+4x-2x^2+4x-8-x^3-2x^2-4x-2x^2-4x-8

= -8x^2-16

Phạm Thị Bích Ngân
Xem chi tiết
Min
31 tháng 10 2015 lúc 21:41

\(ab\left(a-b\right)+bc\left(b-c\right)+ca\left(c-a\right)\)

\(=ab\left(a-b\right)+bc\left(b-c\right)-ca\left(a-c\right)\)

\(=ab\left(a-b\right)+bc\left(b-c\right)-ca\left(a-b+b-c\right)\)

\(=ab\left(a-b\right)+bc\left(b-c\right)-ca\left(a-b\right)-ca\left(b-c\right)\)

\(=\left(a-b\right)\left(ab-ca\right)+\left(b-c\right)\left(bc-ca\right)\)

\(=\left(a-b\right)a\left(b-c\right)+\left(b-c\right)c\left(b-a\right)\)

\(=\left(a-b\right)a\left(b-c\right)-\left(b-c\right)c\left(a-b\right)\)

\(=\left(a-b\right)\left(b-c\right)\left(a-c\right)\)

mình làm vội, có chỗ nào sai bạn thông cảm nha

shoppe pi pi pi pi
Xem chi tiết
Hoàng Bình Nguyên
Xem chi tiết
Tống Mĩ Châu
23 tháng 6 2018 lúc 15:22

b) =(y^2-9)(y^2+9)-(y^4-4)

=y^4-81-y^4+4=-77

QNC T
Xem chi tiết
King Good
5 tháng 10 2021 lúc 20:00

Nguyễn Lê Phước Thịnh
5 tháng 10 2021 lúc 21:39

Bài 2: 

b: Ta có: \(x\left(x+4\right)\left(x-4\right)-\left(x^2+1\right)\left(x^2-1\right)\)

\(=x^3-4x-x^4+1\)

\(=-x^4+x^3-4x+1\)

c: Ta có: \(\left(a+b-c\right)^2-\left(a-c\right)^2-2ab+2ab\)

\(=\left(a+b-c-a+c\right)\left(a+b-c+a-c\right)\)

\(=b\left(2a+b-2c\right)\)

\(=2ab+b^2-2bc\)

Phuong Linh
21 tháng 5 lúc 22:49

 

\(a + b = -3\)   

\(ab = 2\)

Từ \(ab = 2\), ta có thể giải ra được \(a = \frac{2}{b}\) hoặc \(b = \frac{2}{a}\).

Đặt \(a = \frac{2}{b}\) vào \(a + b = -3\) ta được:   

\(\frac{2}{b} + b = -3\)  

\(2 + b^2 = -3b\)  

\(b^2 + 3b + 2 = 0\)  

\((b + 1)(b + 2) = 0\)  

\(b = -1\) hoặc \(b = -2\).

Khi \(b = -1\), ta có \(a = -2\). Khi \(b = -2\), ta có \(a = -1\).

Vậy giá trị của biểu thức \(A = a^3 + b^3\) khi \(a = -2, b = -1\) hoặc khi \(a = -1, b = -2\). 

thaoanh le thi thao
Xem chi tiết
Yuzuri Yukari
1 tháng 10 2016 lúc 14:55

Bài 1 :

(a^2+b^2)(x^2+y^2)=(ax+by)^2 
<=> a^2x^2 + a^2y^2 + b^2x^2 + b^2y^2 = a^2x^2 + 2abxy + b^2y^2 
<=> a^2y^2 + b^2x^2 = 2abxy 
<=> a^2y^2 + b^2x^2 - 2abxy = 0 
<=> (ay - bx)^2 = 0 
=> ay - bx = 0 
=> ay = bx 
=> a/x = b/y ( x,y khác 0)

 

 

Uchiha Sasuke
Xem chi tiết
mèo miu
27 tháng 7 2021 lúc 16:40

Uzumaki Naruto
Xem chi tiết
ngocanh
Xem chi tiết
Nguyễn Hoàng Minh
17 tháng 10 2021 lúc 13:43

\(a,=x^3-16x-x^2-1-x^2+1=x^3-2x^2-16x\\ b,=y^4-81-y^4+4=-77\\ d,=a^2+b^2+c^2+2ab-2bc-2ac+a^2-2ac+c^2-2ab-2ac\\ =2a^2+b^2+2c^2-2bc-6ac\)