Rút gọn biểu thức
a)x^2(x+4)(x-4)-(x^2+1)(x^2-1)
b) (a-b+c)^2-(a-c)^2-2ac+2ab
rút gọn biểu thức
a) (a-b+c)2 - (b-c)2 + 2ab -2ac
b) (x-2)3 -x(x+1)(x-1) +6x(x-3)
c) (x-2)(x2 -2x +4) - (x+2)(x2+2x+4)
a) [ a^2+b^2+c^2-2ab-2bc+2ac]--(b^2-2bc+c^2)+2ab-2ac
=a^2+b^2+c^2-2ab-2bc+2ac-b^2+2bc-c^2+2ab+2ac
=a^2
b) (x^3-6x^2+12x-8)-x(x^2-1)+6x^2-18x
=x^3-6x^2+12x-8-x^3+x+6x^2-18x
= -5x-8
c) [ x^3-2x^2+4x-2x^2+4x-8] - [x^3+2x^2+4x+2x^2+4x+8]
=x^3-2x^2+4x-2x^2+4x-8-x^3-2x^2-4x-2x^2-4x-8
= -8x^2-16
1/ Cho a,b,c đối 1 khác nhau thỏa mãn điều kiện (a + b + c)^2 = a^2 + b^2 + c^2 (^ là mũ)
Rút gọn biểu thức: P= (a^2)/(a^2+2bc) + (b^2)/(b^2+2ac)+(c^2)/(c^2+2ab)
2/ Phân tích đa thức thành nhân tử: (x + 1)^4 + (x^2 + x +1)^2
3/ Phân tích đa thức thành nhân tử: ab(a - b) + bc(b - c) + ca(c - a)
\(ab\left(a-b\right)+bc\left(b-c\right)+ca\left(c-a\right)\)
\(=ab\left(a-b\right)+bc\left(b-c\right)-ca\left(a-c\right)\)
\(=ab\left(a-b\right)+bc\left(b-c\right)-ca\left(a-b+b-c\right)\)
\(=ab\left(a-b\right)+bc\left(b-c\right)-ca\left(a-b\right)-ca\left(b-c\right)\)
\(=\left(a-b\right)\left(ab-ca\right)+\left(b-c\right)\left(bc-ca\right)\)
\(=\left(a-b\right)a\left(b-c\right)+\left(b-c\right)c\left(b-a\right)\)
\(=\left(a-b\right)a\left(b-c\right)-\left(b-c\right)c\left(a-b\right)\)
\(=\left(a-b\right)\left(b-c\right)\left(a-c\right)\)
mình làm vội, có chỗ nào sai bạn thông cảm nha
rút gọn biểu thức
a/(x+y+z)(x+y-z)
b/(a+b+c-d)(a+b-c+d)
c/(a-b+c)^2-(b-c)^2+2ab-2ac
d/(a+b-c)^2+(a-b+c)^2-2(b-c)^2
e/(x-a)^2-(2x-3a)^2+(x+2a)(3x+4a)
Rút gọn biểu thức :
a,x(x+4)(x-4)-(x^2+1)(x^2-1)
b,(y-3)(y+3)(y^2+9)-(y^2+2)(y^2-2)
c,(a+b-c)^2-(a-c)^2-2ab+2ab
d,(a+b+c)^2+(b+c-a)^2)+(c+a-b)^2+(a+b-c)^2
Các bạn làm đầy đủ hộ mình nhé. Cảm ơn các bạn!
b) =(y^2-9)(y^2+9)-(y^4-4)
=y^4-81-y^4+4=-77
Bài 1: Chứng minh rằng :
cho ab=2;a+b=-3 tính giá trị biểu thức a^3 + b^3
Bài 2: rút gọn:
a, 2(x-y)×(x+y)+(x+y)^2(x-y)^2
b, x(x+4)×(x-4)-(x^2+1)×(x^2-1)
c, (a+b-c)-(a-c)^2-2ab+2ab
Bài 2:
b: Ta có: \(x\left(x+4\right)\left(x-4\right)-\left(x^2+1\right)\left(x^2-1\right)\)
\(=x^3-4x-x^4+1\)
\(=-x^4+x^3-4x+1\)
c: Ta có: \(\left(a+b-c\right)^2-\left(a-c\right)^2-2ab+2ab\)
\(=\left(a+b-c-a+c\right)\left(a+b-c+a-c\right)\)
\(=b\left(2a+b-2c\right)\)
\(=2ab+b^2-2bc\)
\(a + b = -3\)
\(ab = 2\)
Từ \(ab = 2\), ta có thể giải ra được \(a = \frac{2}{b}\) hoặc \(b = \frac{2}{a}\).
Đặt \(a = \frac{2}{b}\) vào \(a + b = -3\) ta được:
\(\frac{2}{b} + b = -3\)
\(2 + b^2 = -3b\)
\(b^2 + 3b + 2 = 0\)
\((b + 1)(b + 2) = 0\)
\(b = -1\) hoặc \(b = -2\).
Khi \(b = -1\), ta có \(a = -2\). Khi \(b = -2\), ta có \(a = -1\).
Vậy giá trị của biểu thức \(A = a^3 + b^3\) khi \(a = -2, b = -1\) hoặc khi \(a = -1, b = -2\).
bài 1: chứng minh
nếu (a^2+b^2).(x^2+y^2)=(ax+by)^2 với mọi x,y khác 0 thì a/x=b/y
bài 2:rút gọn các biểu thức :
a)A=2x(2x-1)^2-3x(x+3)(x-3)-4x(x+1)^2
b)B=(a-b+c)^2-(b-c)^2+2ab-2ac
c)C=(3x+1)^2-2(3x+1)(3x+5)+(3x+5)^2
d)D=(a+b-c^2+(a-b+c)^2-2(b-c)^2
Bài 1 :
(a^2+b^2)(x^2+y^2)=(ax+by)^2
<=> a^2x^2 + a^2y^2 + b^2x^2 + b^2y^2 = a^2x^2 + 2abxy + b^2y^2
<=> a^2y^2 + b^2x^2 = 2abxy
<=> a^2y^2 + b^2x^2 - 2abxy = 0
<=> (ay - bx)^2 = 0
=> ay - bx = 0
=> ay = bx
=> a/x = b/y ( x,y khác 0)
Rút gọn các biểu thức sau:
a) 2x(2x-1)^2 - 3x(x+3)(x-3) - 4x(x+1)^2
b) (a-b+c)^2 - (b-c)^2 + 2ab-2ac
c) (3x+1)^2 - 2(3x+1)(3x+5) + (3x+5)^2
d) (3+1)(3^2+1)(3^4+1)(3^8+1)(3^16+1)(3^32+1)
e) (a+b-c)^2 + (a-b+c)^2 - 2(b-c)^2
g) (a+b+c)^2 + (a-b-c)^2 + (b-c-a)^2 + (c-a-b)^2
h) (a+b+c+d)^2 + (a+b-c-d)^2 + (a+c-b-d)^2 + (a+d-b-c)^2
Rút gọn các biểu thức sau:
a) 2x(2x-1)^2 - 3x(x+3)(x-3) - 4x(x+1)^2
b) (a-b+c)^2 - (b-c)^2 + 2ab-2ac
c) (3x+1)^2 - 2(3x+1)(3x+5) + (3x+5)^2
d) (3+1)(3^2+1)(3^4+1)(3^8+1)(3^16+1)(3^32+1)
e) (a+b-c)^2 + (a-b+c)^2 - 2(b-c)^2
g) (a+b+c)^2 + (a-b-c)^2 + (b-c-a)^2 + (c-a-b)^2
h) (a+b+c+d)^2 + (a+b-c-d)^2 + (a+c-b-d)^2 + (a+d-b-c)^2
rút gọn biểu thức
a, x(x+4)(x-4) - (x2+1) - (x2-1)
b, ( y - 3 ) ( y + 3 ) ( y2 + 9 ) - ( y2 + 2 ) ( y2 - 2 )
c, ( a+b+c )2 + ( b+c-a )2 ( c-a-b )2 + ( a-b+c )2
d, ( a+b-c )2 + ( a-c )2 - 2ab - 2bc
giúp emmm
\(a,=x^3-16x-x^2-1-x^2+1=x^3-2x^2-16x\\ b,=y^4-81-y^4+4=-77\\ d,=a^2+b^2+c^2+2ab-2bc-2ac+a^2-2ac+c^2-2ab-2ac\\ =2a^2+b^2+2c^2-2bc-6ac\)