Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lê Gia Linh
Xem chi tiết
Băng Linh Nguyễn
Xem chi tiết
Vũ Như Mai
13 tháng 12 2016 lúc 20:04

a) 5

b) 10

Nguyễn Mạnh Hưng
Xem chi tiết
I lonly love film
Xem chi tiết
Nguyễn Công Vinh
Xem chi tiết
HT.Phong (9A5)
29 tháng 10 2023 lúc 9:10

a) \(5^2\cdot3^x=575\)

\(\Rightarrow3^x=\dfrac{575}{5^2}\)

\(\Rightarrow3^x=\dfrac{575}{25}\)

\(\Rightarrow3^x=23\)

Xem lại đề

b) \(5\cdot2^x-7^2=31\)

\(\Rightarrow5\cdot2^x=31+49\)

\(\Rightarrow5\cdot2^x=80\)

\(\Rightarrow2^x=\dfrac{80}{5}\)

\(\Rightarrow2^x=16\)

\(\Rightarrow2^x=2^4\)

\(\Rightarrow x=4\)

c) \(5^x+5^{x+2}=650\)

\(\Rightarrow5^x\cdot\left(1+5^2\right)=650\)

\(\Rightarrow5^x\cdot26=650\)

\(\Rightarrow5^x=\dfrac{650}{26}\)

\(\Rightarrow5^x=25\)

\(\Rightarrow5^x=5^2\)

\(\Rightarrow x=2\)

a, 52 x \(3^x\) = 575 

           3\(^x\) = 575 : 52

           3\(^x\) = 23

          nếu \(x\) ≤ 0 ta có 3\(^x\) ≤ 1 < 23 (loại) (1)

Nếu \(x\) ≥ 1 ⇒ 3\(^x\) ⋮ 3 \(\ne\) 23 vì 23 không chia hết cho 3 (2)

kết hợp (1) và(2) ta thấy không có giá trị nào của \(x\) thỏa mãn đề bài

Kết luận: \(x\in\varnothing\) 

Lưu Tấn Phát
29 tháng 10 2023 lúc 21:14

a23

b4

c2

Phạm Kim Oanh
Xem chi tiết
Nguyễn Việt Lâm
6 tháng 3 2022 lúc 23:07

\(\dfrac{a}{a+2\sqrt{\left(a+bc\right)}}=\dfrac{a}{a+2\sqrt{a\left(a+b+c\right)+bc}}=\dfrac{a}{a+2\sqrt{\left(a+b\right)\left(a+c\right)}}\)

\(=\dfrac{a}{a+\dfrac{\sqrt{\left(a+b\right)\left(a+c\right)}}{2}+\dfrac{\sqrt{\left(a+b\right)\left(a+c\right)}}{2}+\dfrac{\sqrt{\left(a+b\right)\left(a+c\right)}}{2}+\dfrac{\sqrt{\left(a+b\right)\left(a+c\right)}}{2}}\)

\(\le\dfrac{a}{5^2}\left(\dfrac{1}{a}+\dfrac{1}{\dfrac{\sqrt{\left(a+b\right)\left(a+c\right)}}{2}}+\dfrac{1}{\dfrac{\sqrt{\left(a+b\right)\left(a+c\right)}}{2}}+\dfrac{1}{\dfrac{\sqrt{\left(a+b\right)\left(a+c\right)}}{2}}+\dfrac{1}{\dfrac{\sqrt{\left(a+b\right)\left(a+c\right)}}{2}}\right)\)

\(=\dfrac{a}{25}\left(\dfrac{1}{a}+\dfrac{8}{\sqrt{\left(a+b\right)\left(a+c\right)}}\right)=\dfrac{1}{25}+\dfrac{8}{25}.\dfrac{a}{\sqrt{\left(a+b\right)\left(a+c\right)}}\)

\(\le\dfrac{1}{25}+\dfrac{4}{25}\left(\dfrac{a}{a+b}+\dfrac{a}{a+c}\right)\)

Tương tự:

\(\dfrac{b}{b+2\sqrt{b+ac}}\le\dfrac{1}{25}+\dfrac{4}{25}\left(\dfrac{b}{a+b}+\dfrac{b}{b+c}\right)\)

\(\dfrac{c}{c+2\sqrt{c+ab}}\le\dfrac{1}{25}+\dfrac{4}{25}\left(\dfrac{c}{a+c}+\dfrac{c}{b+c}\right)\)

Cộng vế:

\(P\le\dfrac{3}{25}+\dfrac{4}{25}\left(\dfrac{a+b}{a+b}+\dfrac{b+c}{b+c}+\dfrac{c+a}{c+a}\right)=\dfrac{15}{25}=\dfrac{3}{5}\)

Dấu "=" xảy ra khi \(a=b=c=\dfrac{1}{3}\)

Doan Thi Lan
Xem chi tiết
Bùi Anh Đức
13 tháng 8 2015 lúc 9:41

a) 42+4=46

b)125-2=123

c)11=22-11

Mik trả lời nhanh nhất và đúng nhất đấy.Nhớ li-ke cho mik nhé! 

do thu ha
25 tháng 9 2016 lúc 9:14

=46

=123

=-11

k mk nhha bn!

oOo Thiên Thần Bé Nhỏ oO...
25 tháng 9 2016 lúc 9:18

46

123

11

Phạm Kim Oanh
Xem chi tiết
Nguyễn Việt Lâm
16 tháng 4 2022 lúc 0:08

\(a^2+b⋮ab-1\Rightarrow b\left(a^2+b\right)-a\left(ab-1\right)⋮ab-1\)

\(\Rightarrow a+b^2⋮ab-1\)

Do đó, vai trò của a và b là hoàn toàn như nhau.

TH1: \(a=b\Rightarrow\dfrac{a^2+a}{a^2-1}\in Z\Rightarrow\dfrac{a}{a-1}\in Z\Rightarrow1+\dfrac{1}{a-1}\in Z\)

\(\Rightarrow a=2\Rightarrow a=b=2\)

TH2: \(b>a\Rightarrow b\ge a+1\)

Do \(a^2+b⋮ab-1\Rightarrow a^2+b\ge ab-1\) (nếu \(a< b\) ta sẽ xét với \(a+b^2⋮ab-1\) cho kết quả tương tự nên ko cần TH3 \(a>b\))

\(a^2-1+2\ge ab-b\Rightarrow\left(a-1\right)\left(a+1\right)+2\ge b\left(a-1\right)\)

\(\Rightarrow\left(a-1\right)\left(b-a-1\right)\le2\)

\(\Rightarrow\left(a-1\right)\left(b-a-1\right)=\left\{0;1;2\right\}\)

TH2.1: \(\left(a-1\right)\left(b-a-1\right)=0\Rightarrow\left[{}\begin{matrix}a=1\\b=a+1\end{matrix}\right.\)

- Với \(a=1\Rightarrow\dfrac{b+1}{b-1}\in Z\Rightarrow1+\dfrac{2}{b-1}\in Z\Rightarrow b=\left\{2;3\right\}\)

\(\Rightarrow\left(a;b\right)=\left(1;2\right);\left(1;3\right)\) (và 2 bộ hoán vị \(\left(2;1\right);\left(3;1\right)\) ứng với \(a>b\), lần sau sẽ hoán vị nghiệm luôn ko giải thích lại)

- Với \(b=a+1\Rightarrow\dfrac{a^2+a+1}{a^2+a-1}\in Z\Rightarrow1+\dfrac{2}{a^2+a-1}\in Z\)

\(\Rightarrow a^2+a-1=\left\{1;2\right\}\Rightarrow a=1\Rightarrow b=2\) giống như trên

TH2.2: \(\left(a-1\right)\left(b-a-1\right)=1\Rightarrow\left\{{}\begin{matrix}a-1=1\\b-a-1=1\end{matrix}\right.\) \(\Rightarrow\left(a;b\right)=\left(2;4\right);\left(4;2\right)\) 

TH2.3: \(\left(a-1\right)\left(b-a-1\right)=2=2.1=1.2\)

\(\Rightarrow\left(a;b\right)=\left(3;5\right);\left(5;3\right);\left(2;5\right);\left(5;2\right)\)

Vậy các bộ số thỏa mãn là: \(\left(1;2\right);\left(2;1\right);\left(1;3\right);\left(3;1\right);\left(2;2\right);\left(2;5\right);\left(5;2\right);\left(3;5\right);\left(5;3\right)\)

 

Xem chi tiết
𝚃̷ ❤𝚇̷❤ 𝙷̷
22 tháng 10 2021 lúc 21:17

TL

t i k cho mik đi mik làm cho bài này mik làm rồi

HOk tốt

Khách vãng lai đã xóa
Trương Minh Nghĩa
1 tháng 12 2021 lúc 15:47

Bài 1 :

a) 

Ta có: 87ab ⋮ 9 ⇔ (8 + 7 + a + b) ⁝⋮ 9 ⇔ (15 + a + b) ⋮ 9

Suy ra: (a + b) ∈ {3; 12}

Vì a – b = 4 nên a + b > 3. Suy ra a + b = 12

Thay a = 4 + b vào a + b = 12, ta có:

b + (4 + b) = 12 ⇔ 2b = 12 – 4

⇔ 2b = 8 ⇔ b = 4

a = 4 + b = 4 + 4 = 8

Vậy ta có số: 8784.

b) 

⇒ (7+a+5+b+1) chia hết cho 3

⇔ (13+a+b) chia hết cho 3

+ Vì a, b là chữ số, mà a-b=4

⇒ a,b ∈ (9;5) (8;4) (7;3) (6;2) (5;1) (4;0).

Thay vào biểu thức 7a5b1, ta được :

ĐA 1: a=9; b=5.

ĐA 2: a=6; b=2.

Bài 2 :

Khách vãng lai đã xóa