c) C =2a/3b +3b/4c +4c/5d +5d/2a biết 2a/3b = 3b/4c = 4c/5d = 5d/2a.
Tính giá trị của biểu thức C=2a/3b+3b/4c+4c+5d+5d/2a biết 2a/3b=3b/4c=4c+5d=5d/2a.
C=2a/3b+3b/4c+4c/5d+5d/2a biet 2a/3b=3b/4c=4c/5d=5d/2a
Theo t/c dãy tỉ số=nhau:
\(\frac{2a}{3b}=\frac{3b}{4c}=\frac{4c}{5d}=\frac{5d}{2a}=\frac{2a+3b+4c+5d}{3b+4c+5d+2a}=1\)
Khi đó \(C=\frac{2a}{3b}+\frac{3b}{4c}+\frac{4c}{5d}+\frac{5d}{2a}=1+1+1+1=4\)
Vậy C=4
tính giá trị của biểu thức sau C=2a/3b+3b/4c+4c/5d+5d/2a biết 2a/3b=3b/4c=4c/5d=5d/2a
Đặt :
\(\frac{2a}{3b}=\frac{3b}{4c}=\frac{4c}{5d}=\frac{5d}{2a}=m\)
=>\(\frac{2a}{3b}.\frac{3b}{4c}.\frac{4c}{5d}.\frac{5d}{2a}=m.m.m.m=1\)
=> m4 =1
=> m = 1
=> \(\frac{2a}{3b}=1;\frac{3b}{4c}=1;\frac{4c}{5d}=1;\frac{5d}{2a}=1\)
=>\(\frac{2a}{3b}+\frac{3b}{4c}+\frac{4c}{5d}+\frac{5d}{2a}=1+1+1+1=4\)
hay C =4
2a/3b = 3b/4c = 4c/5d = 5d/2a (1)
ta có: 2a/3b=3b/4c=> 8ac=9b^2
4c/5d=5d/2a=> 8ac=25d^2
=> 9b^2=25d^2
=> b=5d/3
=> 3b=5d(*)
lại có: 3b/4c=4c/5d => 3b/4c=4c/3b (theo *)
=> 9b^2=16c^2
=> b=4c/3
=> 3b/4c=1
BT= 4*3b/4c (Vì các phân số = nhau)
=> BT=3b/c
Mà: 3b=4c ( Vì 3b/4c=1)
=> BT=4c/c=4
Vậy biểu thức trên = 4
Theo t/c dãy tỉ số=nhau:
\(\frac{2a}{3b}=\frac{3b}{4c}=\frac{4c}{5d}=\frac{5d}{2a}=\frac{2a+3b+4c+5d}{3b+4c+5d+2a}=1\)
\(=>2a=3b=4c=5d\)
\(=>C=1+1+1+1=4\)
Vậy C=4
Tính 2a/3b + 3b/4c + 4c/5d + 5d/2a biết 2a/3b=3b/4c=4c/5d=5d/2a
Tính:A= 2a/3b + 3b/4c + 4c/5d + 5d/2a
biết 2a/3b = 3b/4c = 4c/5d = 5d/2a và a,b,c,d >0
2a/3b = 3b/4c = 4c/5d = 5d/2a (1)
ta có: 2a/3b=3b/4c=> 8ac=9b^2
4c/5d=5d/2a=> 8ac=25d^2
=> 9b^2=25d^2
=> b=5d/3
=> 3b=5d(*)
lại có: 3b/4c=4c/5d => 3b/4c=4c/3b (theo *)
=> 9b^2=16c^2
=> b=4c/3
=> 3b/4c=1
BT= 4*3b/4c (Vì các phân số = nhau)
=> BT=3b/c
Mà: 3b=4c ( Vì 3b/4c=1)
=> BT=4c/c=4
Vậy biểu thức trên = 4
Cho a,b,c,d khác 0 biết 2a/3b=3b/4c=4c/5d=5d/2a. Tính C=2a/3b+3b/4c+4c/5d+5d/2a
Tính C=2a/3b+3b/4c+4c/5d+5d/2a với 2a/3b=3b/4c=4c/5d=5d/2a
Tính C = 2a/3b + 3b/4c + 4c/5d + 5d/2a.Biết 2a/3b = 3b/4c = 4c/5d = 5d/2a.
2a/3b = 3b/4c = 4c/5d = 5d/2a (1)
ta có: 2a/3b=3b/4c=> 8ac=9b^2
4c/5d=5d/2a=> 8ac=25d^2
=> 9b^2=25d^2
=> b=5d/3
=> 3b=5d(*)
lại có: 3b/4c=4c/5d => 3b/4c=4c/3b (theo *)
=> 9b^2=16c^2
=> b=4c/3
=> 3b/4c=1
BT= 4*3b/4c (Vì các phân số = nhau)
=> BT=3b/c
Mà: 3b=4c ( Vì 3b/4c=1)
=> BT=4c/c=4
Vậy biểu thức trên = 4
Ta có:\(\frac{2a}{3b}=\frac{3b}{4c}=\frac{4c}{5d}=\frac{5d}{2a}=\frac{2a+3b+4c+5d}{3b+4c+5d+2a}=1\)
Suy ra:\(\frac{2a}{3b}=1;\frac{3b}{4c}=1;\frac{4c}{5d}=1;\frac{5d}{2a}=1\)
Thay vào C ta được:\(C=1+1+1+1=4\)
2a/3b+3b/4c+4c/5d+5d/2a biết 2a/3b=3b/4c=4c/5d=5d/2a