B=\(\dfrac{\sqrt{x}-1}{2+\sqrt{x}}\)
a) Tính B khi x=\(6+2\sqrt{5}\)
b) Tìm x nguyên để B nguyên
Cho B=\(\dfrac{\sqrt{x}-1}{2x+2-2x\sqrt{x}}\)
a)Tính B khi x=\(6+2\sqrt{5}\)
b)tìm x nguyên để b nguyên
Cho B= \(\dfrac{\sqrt{x}-1}{2x+2-2x\sqrt{x}}\)
a)Tính B khi x=6+2√5
b)tìm x nguyên để b nguyên
Cho hai biểu thức:
\(A=\dfrac{\sqrt{x}+1}{\sqrt{x}-2}\); \(B=\dfrac{\sqrt{x}+2}{\sqrt{x}-3}+\dfrac{\sqrt{x}-8}{x-5\sqrt{x}+6}\) với \(x\ge0,x\ne4,x\ne9\)
a) Tính giá trị của A khi \(x=\dfrac{1}{4}\)
b) Rút gọn B.
c) Tìm giá trị nguyên của x để B nhận giá trị là số tự nhiên.
a: Thay \(x=\dfrac{1}{4}\) vào A, ta được:
\(A=\left(\dfrac{1}{2}+1\right):\left(\dfrac{1}{2}-2\right)=\dfrac{3}{2}:\dfrac{-3}{2}=-1\)
b: Ta có: \(B=\dfrac{\sqrt{x}+2}{\sqrt{x}-3}+\dfrac{\sqrt{x}-8}{x-5\sqrt{x}+6}\)
\(=\dfrac{x-4+\sqrt{x}-8}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\)
\(=\dfrac{x+\sqrt{x}-12}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\)
\(=\dfrac{\sqrt{x}+4}{\sqrt{x}-2}\)
c: Để B là số tự nhiên thì \(\sqrt{x}+4⋮\sqrt{x}-2\)
\(\Leftrightarrow\sqrt{x}-2\in\left\{1;2;3;6\right\}\)
\(\Leftrightarrow\sqrt{x}\in\left\{3;4;5;8\right\}\)
hay \(x\in\left\{16;25;64\right\}\)
cho biểu thức
A=\(\left(\dfrac{\sqrt{x}}{\sqrt{x}-1}-\dfrac{1}{x-\sqrt{x}}\right):\dfrac{\sqrt{x}+1}{\sqrt{x}+2}\) và B=\(\dfrac{\sqrt{x}}{\sqrt{x}-3}\)
a,Tính giá trị biểu thức B khi x=36
b,Tìm x để B<\(\dfrac{1}{2}\)
c,Rút gọn A
d, Tìm giá trị x nguyên nhỏ nhất để biểu thức P=A.B nguyên
a. B = \(\dfrac{\sqrt{36}}{\sqrt{36}-3}=\dfrac{6}{6-3}=2\)
a: Thay x=36 vào B, ta được:
\(B=\dfrac{6}{6-3}=\dfrac{6}{3}=2\)
Bài 8:Cho A=\(\dfrac{\sqrt{x}-1}{\sqrt{x}+2}\)và B=\(\dfrac{\sqrt{x}+3}{\sqrt{x}+1}-\dfrac{5}{1-\sqrt{x}}+\dfrac{4}{x-1}\)(x≥0;x≠1)
a)Tính giá trị của A khi x=\(4+2\sqrt{3}\)
b)Rút gọn B
c)Tìm x để P=A.B có giá trị nguyên
Cho hai biểu thức A= \(\dfrac{\sqrt{x}+1}{\sqrt{x}-2}\)và B= \(\dfrac{x}{x-4}+\dfrac{1}{\sqrt{x}+2}-\dfrac{1}{2-\sqrt{x}}\)
a) Tính giá trị của A khi x= 4-\(2\sqrt{3}\)
b) Tìm x để A>0
c) Rút gọn B
d) Tìm giá trị nguyên của x để giá trị của biểu thức A: B nguyên
A=\(\dfrac{\sqrt{x}-2}{\sqrt{x}-3}\) và B=\(\dfrac{6x+6\sqrt{x}-12}{x +5\sqrt{x}+4}-\dfrac{5\sqrt{x}}{\sqrt{x}+4}vớix\ge0;x\ne9\)
a) tính giá trị của A tại x=25
b)rút gọn để P=A.B
c) tìm tất cả giá trị nguyên của x để\(\sqrt{P}\le\dfrac{1}{2}\)
Giúp vớiii ạaa
a: Khi x=25 thì \(A=\dfrac{5-2}{5-3}=\dfrac{3}{2}\)
b: P=A*B
\(=\dfrac{\sqrt{x}-2}{\sqrt{x}-3}\left(\dfrac{6x+6\sqrt{x}-12}{x+5\sqrt{x}+4}-\dfrac{5\sqrt{x}}{\sqrt{x}+4}\right)\)
\(=\dfrac{\sqrt{x}-2}{\sqrt{x}-3}\cdot\left(\dfrac{6x+6\sqrt{x}-12}{\left(\sqrt{x}+1\right)\left(\sqrt{x}+4\right)}-\dfrac{5\sqrt{x}}{\sqrt{x}+4}\right)\)
\(=\dfrac{\sqrt{x}-2}{\sqrt{x}-3}\cdot\dfrac{6x+6\sqrt{x}-12-5x-5\sqrt{x}}{\left(\sqrt{x}+4\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{x+\sqrt{x}-12}{\left(\sqrt{x}+4\right)\left(\sqrt{x}-3\right)}\cdot\dfrac{\sqrt{x}-2}{\sqrt{x}-1}=\dfrac{\sqrt{x}-2}{\sqrt{x}-1}\)
c: \(\sqrt{P}< =\dfrac{1}{2}\)
=>0<=P<=1/4
=>\(\left\{{}\begin{matrix}P>=0\\P-\dfrac{1}{4}< =0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{\sqrt{x}-2}{\sqrt{x}-1}>=0\\\dfrac{\sqrt{x}-2}{\sqrt{x}-1}-\dfrac{1}{4}< =0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}\left[{}\begin{matrix}x>=4\\0< =x< 1\end{matrix}\right.\\\dfrac{4\left(\sqrt{x}-2\right)-\sqrt{x}+1}{4\left(\sqrt{x}-1\right)}< =0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}\left[{}\begin{matrix}x>=4\\0< =x< 1\end{matrix}\right.\\\dfrac{3\sqrt{x}-7}{\sqrt{x}-1}< =0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x>=4\\0< =x< 1\end{matrix}\right.\\1< \sqrt{x}< =\dfrac{7}{3}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x>=4\\0< =x< 1\end{matrix}\right.\\1< x< \dfrac{49}{9}\end{matrix}\right.\) hoặc \(\left\{{}\begin{matrix}\left[{}\begin{matrix}x>=4\\0< =x< 1\end{matrix}\right.\\x=\dfrac{49}{9}\end{matrix}\right.\)
=>\(4< =x< =\dfrac{49}{9}\)
mà x nguyên
nên \(x\in\left\{4;5\right\}\)
Cho \(D=\left(\dfrac{x-2}{x+2}+\dfrac{1}{\sqrt{x}+2}\right).\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\) với \(x>0; x\ne1\)
a) Tìm x để \(2D=2\sqrt{x}+5\)
b) Tìm x để D<1
c) Tìm x nguyên để D nguyên
B=\(\frac{\sqrt{x}-1}{2x+2-2x\sqrt{x}}\)
a) tính b khi x=\(6+2\sqrt{5}\)
b)tìm x nguyên để b nguyên