Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Le Nhat Phuong
Xem chi tiết
Le Nhat Phuong
9 tháng 9 2017 lúc 21:00

1, C/m : a^3 + b^3 + c^3 ≥ a^2.căn (bc) + b^2.căn (ac) + c^2.căn (ab) 
Ta có : 2( a^3 + b^3 + c^3 ) = ( a^3 + b^3 + c^3 ) + ( a^3 + b^3 + c^3 ) 
≥ 3abc + a^3 + b^3 + c^3 ( BĐT Côsi ) 
= a^3 + abc + b^3 + abc + c^3 + abc ≥ 2.a^2.căn (bc) + 2.b^2.căn (ac) + 2.c^2.căn (ab) ( BĐT Côsi ) 
=> a^3 + b^3 + c^3 ≥ a^2.căn (bc) + b^2.căn (ac) + c^2.căn (ab) 
Dấu " = " xảy ra khi a = b = c. 


2, C/m : (a^2 + b^2 + c^2)(1/(a + b ) + 1/(b + c) +1/(a + c) ) ≥ (3/2)(a + b + c) ( 1 ) 
Áp dụng BĐT Bunhiacốpxki cho phân số ( :D ) ta được : 
(a^2 + b^2 + c^2)(1/(a + b ) + 1/(b + c) +1/(a + c) ) ≥ (a^2 + b^2 + c^2).[(1+1+1)^2/(a+b+b+c+a+c)] = (a^2 + b^2 + c^2) . 9/[2.(a+b+c)] 
(1) <=> (a^2 + b^2 + c^2) . 9/[2.(a+b+c)] ≥ (3/2)(a + b + c) 
<=> 3(a^2 + b^2 + c^2) ≥ (a + b + c)^2 
<=> a^2 + b^2 + c^2 ≥ ab + bc + ca. 
BĐT cuối đúng nên => đpcm ! 
Dấu " = " xảy ra khi a = b = c. 


3, C/m : a^4 + b^4 + c^4 ≥ (a + b + c)abc 
Ta có : 2( a^4 + b^4 + c^4 ) = (a^4 + b^4 +c^4) + (a^4 + b^4 +c^4) 
≥ ( a^2.b^2 + b^2.c^2 + c^2.a^2 ) + (a^4 + b^4 +c^4) = ( a^4 + b^2.c^2 ) + ( b^4 + c^2.a^2 ) + ( c^4 + a^2.b^2 ) 
≥ 2.a^2.bc + 2.b^2.ca + 2.c^2.ab ( BĐT Côsi ) 
= 2.abc(a + b + c) 
Do đó a^4 + b^4 + c^4 ≥ (a + b + c)abc 
Dấu " = " xảy ra khi a = b = c. 

Vũ Đình Nguyên
Xem chi tiết
Nguyễn Tuấn Anh
Xem chi tiết
Trí Tiên
6 tháng 8 2020 lúc 10:06

Áp dụng bất đẳng thức Cosi, ta có:

\(\left(a^2+b+c\right)\left(1+b+c\right)\ge\left(a+b+c\right)^2\)Do đó, để chứng minh bất đẳng thức đã cho, ta chỉ cần chứng minh rằng:

\(\frac{a\sqrt{1+b+c}+b\sqrt{1+c+a}+c\sqrt{1+a+b}}{a+b+c}\le\sqrt{3}\)

Áp dụng bất đẳng thức Côsi lần thứ hai ta nhận được:

\(VT=\frac{\sqrt{a}\sqrt{a\left(1+b+c\right)}+\sqrt{b}\sqrt{b\left(1+c+a\right)}+\sqrt{c}\sqrt{c\left(1+a+b\right)}}{a+b+c}\)

\(\le\frac{\sqrt{\left(a+b+c\right)\left[a\left(1+b+c\right)+b\left(1+c+a\right)+c\left(1+a+b\right)\right]}}{a+b+c}\)

\(=\sqrt{1+\frac{2\left(ab+bc+ca\right)}{a+b+c}}\)

\(\le\sqrt{1+\frac{2\left(a+b+c\right)}{3}}\)

\(\le\sqrt{1+\frac{2\sqrt{3\left(a^2+b^2+c^2\right)}}{3}}=\sqrt{3}\left(đpcm\right)\)

Đẳng thức xảy ra khi và chỉ khi a = b = c = 1.

Khách vãng lai đã xóa
Trí Tiên
6 tháng 8 2020 lúc 10:07

sửa đề thành \(a^2+b^2+c^2=3\) nhé

Khách vãng lai đã xóa
/happdanh Danhkisayhello
Xem chi tiết
/happdanh Danhkisayhello
Xem chi tiết
dũng nguyễn tiến
Xem chi tiết
Thảo Vũ
Xem chi tiết
Nguyễn Lê Phước Thịnh
23 tháng 12 2020 lúc 21:42

Ta có: a+b+c=0

nên a+b=-c

Ta có: \(a^2-b^2-c^2\)

\(=a^2-\left(b^2+c^2\right)\)

\(=a^2-\left[\left(b+c\right)^2-2bc\right]\)

\(=a^2-\left(b+c\right)^2+2bc\)

\(=\left(a-b-c\right)\left(a+b+c\right)+2bc\)

\(=2bc\)

Ta có: \(b^2-c^2-a^2\)

\(=b^2-\left(c^2+a^2\right)\)

\(=b^2-\left[\left(c+a\right)^2-2ca\right]\)

\(=b^2-\left(c+a\right)^2+2ca\)

\(=\left(b-c-a\right)\left(b+c+a\right)+2ca\)

\(=2ac\)

Ta có: \(c^2-a^2-b^2\)

\(=c^2-\left(a^2+b^2\right)\)

\(=c^2-\left[\left(a+b\right)^2-2ab\right]\)

\(=c^2-\left(a+b\right)^2+2ab\)

\(=\left(c-a-b\right)\left(c+a+b\right)+2ab\)

\(=2ab\)

Ta có: \(M=\dfrac{a^2}{a^2-b^2-c^2}+\dfrac{b^2}{b^2-c^2-a^2}+\dfrac{c^2}{c^2-a^2-b^2}\)

\(=\dfrac{a^2}{2bc}+\dfrac{b^2}{2ac}+\dfrac{c^2}{2ab}\)

\(=\dfrac{a^3+b^3+c^3}{2abc}\)

Ta có: \(a^3+b^3+c^3\)

\(=\left(a+b\right)^3+c^3-3ab\left(a+b\right)\)

\(=\left(a+b+c\right)\left(a^2+2ab+b^2-ca-cb+c^2\right)-3ab\left(a+b\right)\)

\(=-3ab\left(a+b\right)\)

Thay \(a^3+b^3+c^3=-3ab\left(a+b\right)\) vào biểu thức \(=\dfrac{a^3+b^3+c^3}{2abc}\), ta được: 

\(M=\dfrac{-3ab\left(a+b\right)}{2abc}=\dfrac{-3\left(a+b\right)}{2c}\)

\(=\dfrac{-3\cdot\left(-c\right)}{2c}=\dfrac{3c}{2c}=\dfrac{3}{2}\)

Vậy: \(M=\dfrac{3}{2}\)

Trần Thu Ha
Xem chi tiết
KID Magic Kaito
Xem chi tiết
Phượng Nguyễn
27 tháng 9 2018 lúc 20:21

ko ai làm được à???huhu

Quang Trần Minh
Xem chi tiết
Nguyễn Linh Chi
27 tháng 3 2020 lúc 11:13

Câu hỏi của Hattory Heiji - Toán lớp 8 - Học toán với OnlineMath

Khách vãng lai đã xóa
Phạm Nhật Quân
17 tháng 4 2020 lúc 8:51

tvbobnokb' n

iai

  ni;bv nn0

Khách vãng lai đã xóa