Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
3 tháng 5 2018 lúc 4:39

Chọn D

Xét hàm số:

Do đó d (B; d) nhỏ nhất khi f(t) đạt giá trị nhỏ nhất bằng 27 tại t = 2/3. Suy ra . Chọn một vectơ chỉ phương của đường thẳng d là

Vậy phương trình đường thẳng 

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
20 tháng 1 2018 lúc 16:23

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
7 tháng 6 2018 lúc 12:17

Chọn A

Khoảng cách từ B đến đường thẳng d là lớn nhất nếu AB vuông góc với d.

Đường thẳng d qua A và nhận vecto chỉ phương là A B → ; n →  với n ⇀  là vecto pháp tuyến của mặt phẳng (P).

Nguyễn Thị Hnagwf
Xem chi tiết
Rin Huỳnh
30 tháng 4 2023 lúc 23:04

Vy Khánh
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
30 tháng 4 2019 lúc 11:09

Phương trình mặt phẳng (ABC) là x 3 + y 2 + z 6 = 1 →2x+3y+z-6=0

Dễ thấy D ϵ (ABC). Gọi H,K,I lần lượt là hình chiếu của A,B,C trên.

Do là đường thẳng đi qua D nên AH≤ AD,BK≤ BD,CI≤ CD.

Vậy để khoảng cách từ các điểm A,B,C đến là lớn nhất thì là đường thẳng đi qua D và vuông góc với (ABC). Vậy phương trình đường thẳng là x = 1 + 2 t y = 1 + 3 t     ( t ∈ ℝ ) z = 1 + t . Kiểm tra ta thấy điểm M(5;7;3) ϵ ∆

Đáp án A

Đặng  Mai  Hương
Xem chi tiết
Nguyễn Hoàng Minh
15 tháng 12 2021 lúc 13:50

\(a,\) Gọi điểm cố định (d) luôn đi qua là \(A\left(x_0;y_0\right)\)

\(\Leftrightarrow y_0=\left(m-2\right)x_0+2\Leftrightarrow mx_0-2x_0+2-y_0=0\\ \Leftrightarrow\left\{{}\begin{matrix}x_0=0\\2-2x_0-y_0=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_0=0\\y_0=2\end{matrix}\right.\Leftrightarrow A\left(0;2\right)\)

Vậy \(A\left(0;2\right)\) là điểm cố định mà (d) lun đi qua

\(b,\) PT giao Ox,Oy: \(y=0\Leftrightarrow x=\dfrac{2}{2-m}\Leftrightarrow B\left(\dfrac{2}{2-m};0\right)\Leftrightarrow OB=\dfrac{2}{\left|m-2\right|}\\ x=0\Leftrightarrow y=2\Leftrightarrow C\left(0;2\right)\Leftrightarrow OC=2\)

Gọi H là chân đường cao từ O đến (d) \(\Leftrightarrow OH=1\)

Áp dụng HTL: \(\dfrac{1}{OH^2}=1=\dfrac{1}{OB^2}+\dfrac{1}{OC^2}=\dfrac{\left(m-2\right)^2}{4}+\dfrac{1}{4}\)

\(\Leftrightarrow m^2-4m+4+1=4\\ \Leftrightarrow m^2-4m+1=0\\ \Leftrightarrow\left[{}\begin{matrix}m=2+\sqrt{3}\\m=2-\sqrt{3}\end{matrix}\right.\)

\(c,\) Áp dụng HTL: \(\dfrac{1}{OH^2}=\dfrac{1}{OC^2}+\dfrac{1}{OB^2}=\dfrac{\left(m-2\right)^2}{4}+\dfrac{1}{4}\)

Đặt \(OH^2=t\)

\(\Leftrightarrow\dfrac{1}{t}=\dfrac{m^2-4m+5}{4}\Leftrightarrow t=\dfrac{4}{\left(m-2\right)^2+1}\le\dfrac{4}{0+1}=4\\ \Leftrightarrow OH\le2\\ OH_{max}=2\Leftrightarrow m=2\)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
9 tháng 6 2019 lúc 15:18

Đáp án là  D.

Ta có:

 Đường thẳng d đi qua A(1;2;-1) và có VTCP 

Ngọc Châu
Xem chi tiết