a+b+c=3
a+b+1=4
tim c
Cho 3a-b/a+b=3/4tim giá trị tỉ số a/b b) cho tỉ lệ thức a/b=3/7 tìm giá trị của tỉ số3a-4b/2a+3b
a/
\(\frac{3a-b}{a+b}=\frac{3\left(a+b\right)-4b}{a+b}=3-\frac{4b}{a+b}=\frac{3}{4}.\)
\(\Rightarrow\frac{4b}{a+b}=\frac{9}{4}\Rightarrow9a+9b=16b\Rightarrow9a=7b\Rightarrow\frac{a}{b}=\frac{7}{9}\)
b/
\(\frac{a}{b}=\frac{3}{7}\Rightarrow\frac{a}{3}=\frac{b}{7}=\frac{3a}{9}=\frac{4b}{28}=\frac{3a-4b}{9-28}=\frac{3a-4b}{-19}\)
\(\frac{a}{3}=\frac{b}{7}\Rightarrow\frac{2a}{6}=\frac{3b}{21}\Rightarrow\frac{2a+3b}{6+21}=\frac{2a+3b}{27}\)
\(\Rightarrow\frac{3a-4b}{-19}=\frac{2a+3b}{27}\Rightarrow\frac{3a-4b}{2a+3b}=-\frac{19}{27}\)
1 hinh hop chu nhat co the tich la 15,456 m3 . dien tich mat day la 12,88 . tim cheu cao hop
A . 1,2 m B , 2,1 C .4,3 D .3 4
tim trung binh cong cua 12,45 ; 39,67 ; 46,88
A.45 B .33 C.11 D . 50,3 . GIUP MK
Với a,b,c thuộc R thỏa mãn :
CMR : (a+2b)(b+2c)(c+2a)=1
Lời giải:
Đặt ⎧⎪⎨⎪⎩3a+b−c=x3b+c−a=y3c+a−b=z{3a+b−c=x3b+c−a=y3c+a−b=z
Khi đó, điều kiện đb tương đương với:
(x+y+z)3=24+x3+y3+z3⇔3(x+y)(y+z)(x+z)=24(x+y+z)3=24+x3+y3+z3⇔3(x+y)(y+z)(x+z)=24
⇔3(2a+4b)(2b+4c)(2c+4a)=24⇔3(2a+4b)(2b+4c)(2c+4a)=24
⇔(a+2b)(b+2c)(c+2a)=1⇔(a+2b)(b+2c)(c+2a)=1
Do đó ta có đpcm
Lời giải:
Đặt ⎧⎪⎨⎪⎩3a+b−c=x3b+c−a=y3c+a−b=z{3a+b−c=x3b+c−a=y3c+a−b=z
Khi đó, điều kiện đb tương đương với:
(x+y+z)3=24+x3+y3+z3⇔3(x+y)(y+z)(x+z)=24(x+y+z)3=24+x3+y3+z3⇔3(x+y)(y+z)(x+z)=24
⇔3(2a+4b)(2b+4c)(2c+4a)=24⇔3(2a+4b)(2b+4c)(2c+4a)=24
⇔(a+2b)(b+2c)(c+2a)=1⇔(a+2b)(b+2c)(c+2a)=1
Do đó ta có đpcm
1. Tìm mã và min
P=x+y-17
biết: \(x^2+2xy-14y-10x+3y^2+27=0\)
2. Cho ab>4
Tim min: \(M=\dfrac{a^2}{b-4}+\dfrac{b^2}{a-4}\)
1.
Đặt \(x+y=a\Rightarrow y=a-x\)
\(\Rightarrow x^2+2x\left(a-x\right)-14\left(a-x\right)-10x+3\left(a-x\right)^2+27=0\)
\(\Leftrightarrow2x^2-4\left(a+1\right)x+3a^2-10a+27=0\)
\(\Delta'=4\left(a+1\right)^2-2\left(3a^2-10a+27\right)\ge0\)
\(\Leftrightarrow-a^2+14a-25\ge0\)
\(\Rightarrow7-2\sqrt{6}\le a\le7+2\sqrt{6}\)
\(\Rightarrow-10-2\sqrt{6}\le P\le-10+2\sqrt{6}\)
2. Chắc đề là \(a;b>0\) (đảm bảo mẫu dương) chứ ko phải \(a.b>4\)
\(M\ge\dfrac{\left(a+b\right)^2}{a+b-8}=\dfrac{\left(a+b-8+8\right)^2}{a+b-8}=\dfrac{\left(a+b-8\right)^2+16\left(a+b-8\right)+64}{a+b-8}\)
\(M\ge a+b-8+\dfrac{64}{a+b-8}+16\ge2\sqrt{\dfrac{64\left(a+b-8\right)}{a+b-8}}+16=32\)
Dấu "=" xảy ra khi \(a=b=8\)
Cho a,b,c khác 0 thỏa mãn: a^3b^3+b^3c^3+c^3a^3=3a^2b^2c^2
tính A=(1+a/b)(1+b/c)(1+c/a)
Đặt ab = x, bc = y, ca = z (x, y, z ≠ 0 thỏa mãn x^3 + y^3 + z^3 = 3xyz)
⇔ (x+y)^3 − 3xy(x + y) + z^3 = 3xyz <=> (x+y)^3 − 3xy(x + y) + z^3 = 3xyz
⇔ (x + y)^3 + z^3 − 3xy(x + y+ z) = 0 ⇔ (x + y)^3 + z^3 − 3xy(x + y + z) = 0
⇔ (x + y + z)[(x + y)^2 − z (x + y) + z^2] − 3xy(x + y + z) = 0 ⇔ (x + y + z)[(x + y)^2 − z(x + y) + z2] − 3xy(x + y + z) = 0
⇔ (x + y + z)(x^2 + y^2 + z^2 − xy − yz − xz) = 0 ⇔ (x + y + z)(x^2 + y^2 + z^2 − xy − yz − xz) = 0
<=> x + y + z = 0 (1) và x^2 + y^2 + z^2 − xy − yz − xz = 0 (2)
Với (1): ⇔ ab + bc + ac = 0 ⇔ ab + bc + ac = 0
P = (1 + a/b)(1 + b/c)(1 + c/a) = (a + b)(b + c)(c + a)/abc=(ab + bc + ac)(a + b + c) − abc/abc = 0 − abc/abc = −1
Với (2) ⇔ (x − y)^2 + (y − z)^2 + (z − x)^2/2 = 0
⇔ (x − y)^2 + (y − z)^2 + (z − x)^2 = 0
Ta thấy (x − y)^2; (y − z)^2; (z − x)^2 ≥ 0 ∀x, y, z nên để tổng của chúng bằng 0 thì:
(x − y)^2 = (y − z)^2 = (z − x)^2 = 0 ⇒ x = y = z
⇔ ab = bc = ac ⇔ a=b=c (do a, b, c ≠ 0)
⇒ A = (1 + 1)(1 + 1)(1 + 1) = 8
Vậy...........
Cho a,b,c khác 0 thỏa mãn: a^3b^3+b^3c^3+c^3a^3=3a^2b^2c^2
tính A=(1+a/b)(1+b/c)(1+c/a)
Lời giải:
Đặt $ab=x,bc=y, ca=z$. Điều kiện đề bài tương đương với: Cho $x,y,z\neq 0$ thỏa mãn:
\(x^3+y^3+z^3=3xyz\)
\(\Leftrightarrow (x+y)^3-3xy(x+y)+z^3=3xyz\)
\(\Leftrightarrow (x+y)^3+z^3-3xy(x+y+z)=0\)
\(\Leftrightarrow (x+y+z)[(x+y)^2-z(x+y)+z^2]-3xy(x+y+z)=0\)
\(\Leftrightarrow (x+y+z)(x^2+y^2+z^2-xy-yz-xz)=0\)
\(\Rightarrow \left[\begin{matrix} x+y+z=0(1)\\ x^2+y^2+z^2-xy-yz-xz=0(2)\end{matrix}\right.\)
Với (1):\(\Leftrightarrow ab+bc+ac=0\)
\(A=(1+\frac{a}{b})(1+\frac{b}{c})(1+\frac{c}{a})=\frac{(a+b)(b+c)(c+a)}{abc}=\frac{(ab+bc+ac)(a+b+c)-abc}{abc}=\frac{0-abc}{abc}=-1\)
Với (2) \(\Leftrightarrow \frac{(x-y)^2+(y-z)^2+(z-x)^2}{2}=0\)
\(\Leftrightarrow (x-y)^2+(y-z)^2+(z-x)^2=0\)
Ta thấy $(x-y)^2; (y-z)^2; (z-x)^2\geq 0, \forall x,y,z$ nên để tổng của chúng bằng $0$ thì:
\((x-y)^2=(y-z)^2=(z-x)^2=0\Rightarrow x=y=z\)
\(\Leftrightarrow ab=bc=ac\Leftrightarrow a=b=c\) (do $a,b,c\neq 0$)
\(\Rightarrow A=(1+1)(1+1)(1+1)=8\)
Vậy...........
Lời giải:
Đặt $ab=x,bc=y, ca=z$. Điều kiện đề bài tương đương với: Cho $x,y,z\neq 0$ thỏa mãn:
\(x^3+y^3+z^3=3xyz\)
\(\Leftrightarrow (x+y)^3-3xy(x+y)+z^3=3xyz\)
\(\Leftrightarrow (x+y)^3+z^3-3xy(x+y+z)=0\)
\(\Leftrightarrow (x+y+z)[(x+y)^2-z(x+y)+z^2]-3xy(x+y+z)=0\)
\(\Leftrightarrow (x+y+z)(x^2+y^2+z^2-xy-yz-xz)=0\)
\(\Rightarrow \left[\begin{matrix} x+y+z=0(1)\\ x^2+y^2+z^2-xy-yz-xz=0(2)\end{matrix}\right.\)
Với (1):\(\Leftrightarrow ab+bc+ac=0\)
\(A=(1+\frac{a}{b})(1+\frac{b}{c})(1+\frac{c}{a})=\frac{(a+b)(b+c)(c+a)}{abc}=\frac{(ab+bc+ac)(a+b+c)-abc}{abc}=\frac{0-abc}{abc}=-1\)
Với (2) \(\Leftrightarrow \frac{(x-y)^2+(y-z)^2+(z-x)^2}{2}=0\)
\(\Leftrightarrow (x-y)^2+(y-z)^2+(z-x)^2=0\)
Ta thấy $(x-y)^2; (y-z)^2; (z-x)^2\geq 0, \forall x,y,z$ nên để tổng của chúng bằng $0$ thì:
\((x-y)^2=(y-z)^2=(z-x)^2=0\Rightarrow x=y=z\)
\(\Leftrightarrow ab=bc=ac\Leftrightarrow a=b=c\) (do $a,b,c\neq 0$)
\(\Rightarrow A=(1+1)(1+1)(1+1)=8\)
Vậy...........
với a,b,c thuộc R thỏa mãn : (3a+3b+3c)^3=24+(3a+b-c)^3+(3b+c-a)^3+(3c+a-b)^3
CMR : (1+2a)(1+2b)(1+2c)=1
Hình như đề sai , giả sử a = b = c = 0
=> vế trái bằng 0 , vé phải bằng 24
\(\left(3a+b-c\right)^3+\left(3b+c-a\right)^3+\left(3c+a-b\right)^3+24\)
\(=24+27a^3+27b^3+27c^3+3\left(\left(3a+b\right)\left(3a-c\right)\left(b-c\right)+\left(3b+c\right)\left(3b-a\right)\left(c-a\right)+\left(3c+a\right)\left(3c-b\right)\left(a-b\right)\right)\)\(\left(3a+3b+3c\right)^3=27a^3+27b^3+27c^3+81\left(a+b\right)\left(b+c\right)\left(c+a\right)\)
\(\Rightarrow8+A=\left(a+b\right)\left(b+c\right)\left(c+a\right)\)
Có lẻ như đề sai ,
giả sử a = b = c = 0
=> vế trái bằng 0 ,
vế phải bằng 24
Bài 1: Chứng minh:
a, ( a+b+c)(a\(^2\)+b\(^2\)+c\(^2\)-ab-ac-bc)=a\(^3\)+b\(^3\)+c\(^3\)-3abc
b, ( 3a+2b-1)(a+5)-2b(a-2)=(3a+5)(a+3)+2(7b-10)
c, 2(a+b+c)(\(\dfrac{b}{2}\)+\(\dfrac{c}{2}\)-\(\dfrac{a}{2}\))=2bc+c\(^2\)+b\(^2\)-a\(^2\)
a: a^3+b^3+c^3-3abc
=(a+b)^3+c^3-3ab(a+b)-3bac
=(a+b+c)(a^2+2ab+b^2-ac-bc+c^2)-3ab(a+b+c)
=(a+b+c)(a^2+b^2+c^2-ab-ac-bc)
b: Đề sai rồi bạn
c: 2(a+b+c)*(b/2+c/2-a/2)
=(a+b+c)(b+c-a)
=(b+c)^2-a^2
=c^2+2bc+c^2-a^2
Tìm a biết
1) 3a-b-2c=2 với b=6;c=-1
2) 12-a+b+5c=-1 với b=-7;c=5
3) 1-2b+c-3a=-9 với b=-3;c=-7
1) 3a-b-2c=2 với b=6;c=-1
thay b=6;c=-1 vào bt ta có:
3a - 6- 2(-1)=2
3a-6 -(-2)=2
3a-6= 2+(-2)
3a-6=0
3a=0+6
3a=6
a=6:3
a=2
2) 12-a+b+5c=-1 với b=-7;c=5
thay b=-7;c=5 vào bt ta có :
12-a + (-7) + 5.5=-1
12-a +(-7) +25=-1
12-a + (-7) = -1-25
12-a +(-7) = -26
12-a = -26-(-7)
12-a=-19
a=12-(-19)
a=31
3) 1-2b+c-3a=-9 với b=-3;c=-7
thay b=-3;c=-7 vào bt ta có:
1- 2(-3) + (-7) -3a=-9
1-(-6) +(-7) -3a=-9
7 + (-7) -3a =-9
0-3a =-9
3a=0-(-9)
3a=9
a=9:3
a=3
1) 3a-b-2c=2 với b=6;c=-1
thay b=6;c=-1 vào bt ta có:
3a - 6- 2(-1)=2
3a-6 -(-2)=2
3a-6= 2+(-2)
3a-6=0
3a=0+6
3a=6
a=6:3
a=2
2) 12-a+b+5c=-1 với b=-7;c=5
thay b=-7;c=5 vào bt ta có :
12-a + (-7) + 5.5=-1
12-a +(-7) +25=-1
12-a + (-7) = -1-25
12-a +(-7) = -26
12-a = -26-(-7)
12-a=-19
a=12-(-19)
a=31
3) 1-2b+c-3a=-9 với b=-3;c=-7
thay b=-3;c=-7 vào bt ta có:
1- 2(-3) + (-7) -3a=-9
1-(-6) +(-7) -3a=-9
7 + (-7) -3a =-9
0-3a =-9
3a=0-(-9)
3a=9
a=9:3
a=3
Cho a/b = c/d ≠ -1/3. Chứng minh a/3a+b = c/3a+d
giúp mình bài này vs ạ
Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)
\(\dfrac{a}{3a+b}=\dfrac{bk}{3bk+b}=\dfrac{k}{3k+1}\)
\(\dfrac{c}{3c+d}=\dfrac{dk}{3dk+d}=\dfrac{k}{3k+1}\)
Do đó: \(\dfrac{a}{3a+b}=\dfrac{c}{3c+d}\)