Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Tran minh man
Xem chi tiết
Nguyễn Thị Thúy Hằng
15 tháng 8 2016 lúc 21:05

=x^3-xy-x^3-x^2y+x^2y--xy

=-2xy

thay x=1\2 va y bang 100 vao Bta duoc 

B= -2.1\2.100=-100

Poku no Pico
Xem chi tiết
肖战Daytoy_1005
7 tháng 3 2021 lúc 20:02

Theo bài ra, ta có: \(x^2-y=y^2-x\Leftrightarrow x^2-y^2=-x+y\)

\(\Leftrightarrow\left(x-y\right)\left(x+y\right)=-\left(x-y\right)\)

\(\Leftrightarrow\left(x+y\right)=-1\)

Ta lại có: \(A=x^2+2xy+y^2-3x-3y=\left(x+y\right)^2-3\left(x+y\right)\)

Thay x+y=-1 vào biểu thức A, ta được: \(A=\left(-1\right)^2-3.\left(-1\right)=1+3=4\)

Vậy A=4

Nhoc Ti Dang Yeu
Xem chi tiết
Đặng Nguyễn Khánh Uyên
30 tháng 1 2017 lúc 10:19

a. Tại x=\(\frac{-1}{2}\), ta có:

 \(\left(\frac{-1}{2}\right)^2+4.\left(\frac{-1}{2}\right)+3=\frac{1}{4}+\left(-2\right)+3=\frac{5}{4}\)

b. Ta có:

 \(x^2+4x+3=0\)

\(\Rightarrow x^2+x+3x+3=0\)

\(\Rightarrow\left(x^2+x\right)+\left(3x+3\right)=0\)

\(\Rightarrow x\left(x+1\right)+3\left(x+1\right)=0\)

\(\Rightarrow\left(x+1\right)\left(x+3\right)=0\)

\(\Rightarrow\hept{\begin{cases}x+1=0\\x+3=0\end{cases}\Rightarrow\hept{\begin{cases}x=-1\\x=-3\end{cases}}}\)

Vậy \(x=-1;x=-3\)

Ngo Phuong Anh
Xem chi tiết
𝓓𝓾𝔂 𝓐𝓷𝓱
5 tháng 6 2021 lúc 22:44

Ta có: \(\Delta'=32>0\)

\(\Rightarrow\) Phương trình có 2 nghiệm phân biệt

Theo Vi-ét, ta có: \(\left\{{}\begin{matrix}x_1+x_2=12\\x_1x_2=4\end{matrix}\right.\)

Mặt khác: \(T=\dfrac{x_1^2+x^2_2}{\sqrt{x_1}+\sqrt{x_2}}\)

\(\Rightarrow T^2=\dfrac{x_1^4+x^4_2+2x_1^2x_2^2}{x_1+x_2+2\sqrt{x_1x_2}}=\dfrac{\left(x_1^2+x_1^2\right)^2}{x_1+x_2+2\sqrt{x_1x_2}}\) \(=\dfrac{\left[\left(x_1+x_2\right)^2-2x_1x_2\right]^2}{x_1+x_2+2\sqrt{x_1x_2}}=\dfrac{\left(12^2-2\cdot4\right)^2}{12+2\sqrt{4}}=1156\)

Mà ta thấy \(T>0\) \(\Rightarrow T=\sqrt{1156}=34\) 

 

HOANG THI NGOC ANH
Xem chi tiết
Edogawa Conan
1 tháng 10 2017 lúc 16:09

Câu 1: Ta có: A = \(x^3+y^3+3xy=x^3+y^3+3xy\times1=x^3+y^3+3xy\left(x+y\right)\)

\(=\left(x+y\right)^3=1^3=1\)

Câu 2: Ta có: \(B=x^3-y^3-3xy=\left(x-y\right)\left(x^2+xy+y^2\right)-3xy\)

\(=x^2+xy+y^2-3xy=x^2-2xy+y^2=\left(x-y\right)^2=1^2=1\)

Câu 3: Ta có: \(C=x^3+y^3+3xy\left(x^2+y^2\right)-6x^2.y^2\left(x+y\right)\)

\(=x^3+y^3+3xy\left(x^2+2xy+y^2-2xy\right)+6x^2y^2\)

\(=x^3+y^3+3xy\left(x+y\right)^2-3xy.2xy+6x^2y^2\)

\(=x^3+y^3+3xy.1-6x^2y^2+6x^2y^3\)

\(=x^3+y^3+3xy\left(x+y\right)=\left(x+y\right)^3=1^3=1\)

Jimin
Xem chi tiết
Vũ Thị Thu Hằng
8 tháng 8 2018 lúc 21:19

a)x(x-6) - y(6-x) tại x=2006, y=2002

ta có: x(x-6) - y(6-x)

=x(x-6)+y(x-6)

=(x-6)(x+y)*

thay x=2006, y=2002 vào * ta có

(2006-6)(2006+2002)= 2000 .4008=8016000

b) 5x(x-y)-y(x-y) tại x=60, y=5

ta có: 5x(x-y)-y(x-y)

=(x-y)(5x-y)

thay x=60, y=5 ta có

(60-5)(5.60-5) =55.(300-5)=55.295=16225

rarwara
Xem chi tiết
kudo shinichi
19 tháng 4 2019 lúc 12:53

Ta có: A = x + xy - y - x - 4xy - 3y

A = (x - x) + (xy - 4xy) - (y + 3y)

A = -3xy - 4y

Thay x = 0,5; y = -4 vào biểu thức A, ta được:

A = -3. 0,5. (-4) - 4.(-4) = 6 + 16 = 22

Vậy giá trị của biểu thức A = 22 tại x = 0,6; y = -4

dat ngo
Xem chi tiết
dat ngo
13 tháng 2 2022 lúc 17:43

gianroi

 

Nguyễn Huy Tú
13 tháng 2 2022 lúc 18:20

Ta có : \(\left|x\right|=5\Rightarrow x=5;x=-5\)

Với x = 5 ; y = 1 => A = 25 + 20 - 3 = 42 

Với x = -5 ; y = 1 => A = 25 - 20 - 3 = 2 

Nguyễn Thanh Bình
Xem chi tiết